Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897047948> ?p ?o ?g. }
- W2897047948 endingPage "2763" @default.
- W2897047948 startingPage "2756" @default.
- W2897047948 abstract "Metal nanoclusters containing a few to several hundred atoms with sizes ranging from sub-nanometer to ∼2 nm occupy an intermediate size regime that bridges larger plasmonic nanoparticles and smaller metal complexes. With strong quantum confinement, metal nanoclusters exhibit molecule-like properties. This Account focuses on noble metal nanoclusters that are synthesized within a single stranded DNA template. Compared to other ligand protected metal nanoclusters, DNA-templated metal nanoclusters manifest intriguing physical and chemical properties that are heavily influenced by the design of DNA templates. For example, DNA-templated silver nanoclusters can show bright fluorescence, tunable emission colors, and enhanced stability by tuning the sequence of the encapsulating DNA template. DNA-templated gold nanoclusters can also serve as excellent cocatalysts, which are integratable with other biocatalysts such as enzymes. In this Account, DNA-templated silver and gold nanoclusters are selected as paradigm systems to showcase their emergent properties and unique applications. We first discuss the DNA-templated silver nanoclusters with a focus on the creation of a complementary palette of emission colors, which has potential applications for multiplex assays. The importance of the DNA template toward enhanced stability of silver nanoclusters is also demonstrated. We then introduce a special class of activable fluorescence probes that are based on the fluorescence turn-on phenomena of DNA-templated silver nanoclusters, which are named nanocluster beacons (NCBs). NCBs have distinct advantages over molecular beacons for nucleic acid detection, and their emission mechanisms are also discussed in detail. We then discuss a universal method of creating novel DNA-silver nanocluster aptamers for protein detection with high specificity. The remainder of the Account is devoted to the DNA-templated gold nanoclusters. We demonstrate that DNA-gold nanoclusters can serve as enhancers for enzymatic reduction of oxygen, which is one of the most important reactions in biofuel cells. Although DNA-templated metal nanoclusters are still in their infancy, we anticipate they will emerge as a new type of functional nanomaterial with wide applications in biology and energy science. Future research will focus on the synthesis of size selected DNA-metal nanoclusters with atomic monodispersity, structural determination of different sized DNA-metal nanoclusters, and establishment of structure-property correlations. Some long-standing mysteries, such as the origin of fluorescence and mechanism for emission color tunability, constitute the central questions regarding the photophysical properties of DNA-metal nanoclusters. On the application side, more studies are required to understand the interaction between nanocluster and biological systems. In the foreseeable future, one can expect that new biosensors, catalysts, and functional devices will be invented based on the intriguing properties of well-designed DNA-metal nanoclusters and their composites. Overall, DNA-metal nanoclusters can add additional spotlights into the highly vibrant field of ligand protected, quantum sized metal nanoclusters." @default.
- W2897047948 created "2018-10-26" @default.
- W2897047948 creator A5011291997 @default.
- W2897047948 creator A5038538510 @default.
- W2897047948 creator A5043532850 @default.
- W2897047948 creator A5044248058 @default.
- W2897047948 creator A5065150520 @default.
- W2897047948 date "2018-10-19" @default.
- W2897047948 modified "2023-10-16" @default.
- W2897047948 title "DNA Templated Metal Nanoclusters: From Emergent Properties to Unique Applications" @default.
- W2897047948 cites W1811297454 @default.
- W2897047948 cites W1967784525 @default.
- W2897047948 cites W1974725662 @default.
- W2897047948 cites W1976627411 @default.
- W2897047948 cites W1978827733 @default.
- W2897047948 cites W1985338993 @default.
- W2897047948 cites W1990072852 @default.
- W2897047948 cites W1994716553 @default.
- W2897047948 cites W1996845160 @default.
- W2897047948 cites W1996874298 @default.
- W2897047948 cites W2000636373 @default.
- W2897047948 cites W2002707417 @default.
- W2897047948 cites W2005299135 @default.
- W2897047948 cites W2010615605 @default.
- W2897047948 cites W2011218016 @default.
- W2897047948 cites W2016598666 @default.
- W2897047948 cites W2017031026 @default.
- W2897047948 cites W2019403558 @default.
- W2897047948 cites W2022680058 @default.
- W2897047948 cites W2023246350 @default.
- W2897047948 cites W2025852697 @default.
- W2897047948 cites W2034412692 @default.
- W2897047948 cites W2043621883 @default.
- W2897047948 cites W2049268949 @default.
- W2897047948 cites W2067738513 @default.
- W2897047948 cites W2071388056 @default.
- W2897047948 cites W2074963667 @default.
- W2897047948 cites W2083270718 @default.
- W2897047948 cites W2086531219 @default.
- W2897047948 cites W2089248667 @default.
- W2897047948 cites W2091792005 @default.
- W2897047948 cites W2094627594 @default.
- W2897047948 cites W2094848101 @default.
- W2897047948 cites W2095343210 @default.
- W2897047948 cites W2100192279 @default.
- W2897047948 cites W2101550675 @default.
- W2897047948 cites W2106220618 @default.
- W2897047948 cites W2138564139 @default.
- W2897047948 cites W2150352377 @default.
- W2897047948 cites W2159984983 @default.
- W2897047948 cites W2162256094 @default.
- W2897047948 cites W2236129896 @default.
- W2897047948 cites W2289909263 @default.
- W2897047948 cites W2312345857 @default.
- W2897047948 cites W2322775008 @default.
- W2897047948 cites W2326957983 @default.
- W2897047948 cites W2512948094 @default.
- W2897047948 cites W2515286324 @default.
- W2897047948 cites W2529388634 @default.
- W2897047948 cites W2567271618 @default.
- W2897047948 cites W2618072944 @default.
- W2897047948 cites W2623026738 @default.
- W2897047948 cites W2793528351 @default.
- W2897047948 cites W4234750540 @default.
- W2897047948 doi "https://doi.org/10.1021/acs.accounts.8b00366" @default.
- W2897047948 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30339358" @default.
- W2897047948 hasPublicationYear "2018" @default.
- W2897047948 type Work @default.
- W2897047948 sameAs 2897047948 @default.
- W2897047948 citedByCount "127" @default.
- W2897047948 countsByYear W28970479482019 @default.
- W2897047948 countsByYear W28970479482020 @default.
- W2897047948 countsByYear W28970479482021 @default.
- W2897047948 countsByYear W28970479482022 @default.
- W2897047948 countsByYear W28970479482023 @default.
- W2897047948 crossrefType "journal-article" @default.
- W2897047948 hasAuthorship W2897047948A5011291997 @default.
- W2897047948 hasAuthorship W2897047948A5038538510 @default.
- W2897047948 hasAuthorship W2897047948A5043532850 @default.
- W2897047948 hasAuthorship W2897047948A5044248058 @default.
- W2897047948 hasAuthorship W2897047948A5065150520 @default.
- W2897047948 hasBestOaLocation W28970479482 @default.
- W2897047948 hasConcept C118630614 @default.
- W2897047948 hasConcept C119203544 @default.
- W2897047948 hasConcept C121332964 @default.
- W2897047948 hasConcept C129312508 @default.
- W2897047948 hasConcept C171250308 @default.
- W2897047948 hasConcept C185592680 @default.
- W2897047948 hasConcept C186187911 @default.
- W2897047948 hasConcept C191897082 @default.
- W2897047948 hasConcept C192562407 @default.
- W2897047948 hasConcept C2778402822 @default.
- W2897047948 hasConcept C544153396 @default.
- W2897047948 hasConcept C552990157 @default.
- W2897047948 hasConcept C55493867 @default.
- W2897047948 hasConcept C62520636 @default.
- W2897047948 hasConcept C82714645 @default.
- W2897047948 hasConcept C91881484 @default.