Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897063121> ?p ?o ?g. }
- W2897063121 endingPage "741" @default.
- W2897063121 startingPage "713" @default.
- W2897063121 abstract "We present a reduced-order modeling technique for subsurface multi-phase flow problems building on the recently introduced deep residual recurrent neural network (DR-RNN) (Nagoor Kani et al. in DR-RNN: a deep residual recurrent neural network for model reduction. ArXiv e-prints, 2017). DR-RNN is a physics-aware recurrent neural network for modeling the evolution of dynamical systems. The DR-RNN architecture is inspired by iterative update techniques of line search methods where a fixed number of layers are stacked together to minimize the residual (or reduced residual) of the physical model under consideration. In this manuscript, we combine DR-RNN with proper orthogonal decomposition (POD) and discrete empirical interpolation method (DEIM) to reduce the computational complexity associated with high-fidelity numerical simulations. In the presented formulation, POD is used to construct an optimal set of reduced basis functions and DEIM is employed to evaluate the nonlinear terms independent of the full-order model size. We demonstrate the proposed reduced model on two uncertainty quantification test cases using Monte Carlo simulation of subsurface flow with random permeability field. The obtained results demonstrate that DR-RNN combined with POD–DEIM provides an accurate and stable reduced model with a fixed computational budget that is much less than the computational cost of standard POD–Galerkin reduced model combined with DEIM for nonlinear dynamical systems." @default.
- W2897063121 created "2018-10-26" @default.
- W2897063121 creator A5007464582 @default.
- W2897063121 creator A5026214266 @default.
- W2897063121 date "2018-10-22" @default.
- W2897063121 modified "2023-10-15" @default.
- W2897063121 title "Reduced-Order Modeling of Subsurface Multi-phase Flow Models Using Deep Residual Recurrent Neural Networks" @default.
- W2897063121 cites W1496311819 @default.
- W2897063121 cites W1498436455 @default.
- W2897063121 cites W1521261713 @default.
- W2897063121 cites W1528483814 @default.
- W2897063121 cites W1529206345 @default.
- W2897063121 cites W1565476017 @default.
- W2897063121 cites W1580960713 @default.
- W2897063121 cites W1590943005 @default.
- W2897063121 cites W1633869374 @default.
- W2897063121 cites W175136955 @default.
- W2897063121 cites W1759920278 @default.
- W2897063121 cites W1923943808 @default.
- W2897063121 cites W1935773568 @default.
- W2897063121 cites W1969537712 @default.
- W2897063121 cites W197594695 @default.
- W2897063121 cites W1981119767 @default.
- W2897063121 cites W1981522651 @default.
- W2897063121 cites W1982290494 @default.
- W2897063121 cites W1988376519 @default.
- W2897063121 cites W1998233602 @default.
- W2897063121 cites W2005049310 @default.
- W2897063121 cites W2009124196 @default.
- W2897063121 cites W2012803260 @default.
- W2897063121 cites W2014330362 @default.
- W2897063121 cites W2020141363 @default.
- W2897063121 cites W2023491556 @default.
- W2897063121 cites W2035934750 @default.
- W2897063121 cites W2042793915 @default.
- W2897063121 cites W2046549588 @default.
- W2897063121 cites W2047591100 @default.
- W2897063121 cites W2049753327 @default.
- W2897063121 cites W2053154595 @default.
- W2897063121 cites W2059821792 @default.
- W2897063121 cites W2060137336 @default.
- W2897063121 cites W2061064563 @default.
- W2897063121 cites W2066616714 @default.
- W2897063121 cites W2073594627 @default.
- W2897063121 cites W2076413768 @default.
- W2897063121 cites W2077929638 @default.
- W2897063121 cites W2085767064 @default.
- W2897063121 cites W2088872157 @default.
- W2897063121 cites W2092398714 @default.
- W2897063121 cites W2098980185 @default.
- W2897063121 cites W2100164130 @default.
- W2897063121 cites W2112823474 @default.
- W2897063121 cites W2126725034 @default.
- W2897063121 cites W2126974166 @default.
- W2897063121 cites W2133642820 @default.
- W2897063121 cites W2140006076 @default.
- W2897063121 cites W2140293807 @default.
- W2897063121 cites W2144012961 @default.
- W2897063121 cites W2147836374 @default.
- W2897063121 cites W2150355110 @default.
- W2897063121 cites W2157130548 @default.
- W2897063121 cites W2160815625 @default.
- W2897063121 cites W2161155740 @default.
- W2897063121 cites W2161344224 @default.
- W2897063121 cites W2172788535 @default.
- W2897063121 cites W2280962188 @default.
- W2897063121 cites W2325253166 @default.
- W2897063121 cites W2398394876 @default.
- W2897063121 cites W2402786252 @default.
- W2897063121 cites W2480567117 @default.
- W2897063121 cites W2509372996 @default.
- W2897063121 cites W2738335552 @default.
- W2897063121 cites W2765832510 @default.
- W2897063121 cites W2769142751 @default.
- W2897063121 cites W2790453971 @default.
- W2897063121 cites W2795176283 @default.
- W2897063121 cites W4241270240 @default.
- W2897063121 cites W4320800818 @default.
- W2897063121 cites W593406250 @default.
- W2897063121 cites W790656430 @default.
- W2897063121 cites W91836101 @default.
- W2897063121 doi "https://doi.org/10.1007/s11242-018-1170-7" @default.
- W2897063121 hasPublicationYear "2018" @default.
- W2897063121 type Work @default.
- W2897063121 sameAs 2897063121 @default.
- W2897063121 citedByCount "39" @default.
- W2897063121 countsByYear W28970631212019 @default.
- W2897063121 countsByYear W28970631212020 @default.
- W2897063121 countsByYear W28970631212021 @default.
- W2897063121 countsByYear W28970631212022 @default.
- W2897063121 countsByYear W28970631212023 @default.
- W2897063121 crossrefType "journal-article" @default.
- W2897063121 hasAuthorship W2897063121A5007464582 @default.
- W2897063121 hasAuthorship W2897063121A5026214266 @default.
- W2897063121 hasBestOaLocation W28970631211 @default.
- W2897063121 hasConcept C104114177 @default.
- W2897063121 hasConcept C105795698 @default.
- W2897063121 hasConcept C11413529 @default.