Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897064440> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W2897064440 abstract "Ship detection in optical remote sensing imagery has been a hot topic in recent years and achieved promising performance. However, there are still several problems in detecting ships with various sizes. The key objective of all scales precise positioning is to obtain a high resolution feature map while having a high semantic characteristic information. Based on this idea, a modified RetinaNet (M-RetinaNet) is proposed to build dense connections between shallow and deep feature maps, which aims at solving problems resulting from different sizes of ships. It consists of a baseline residual network and a modified multi-scale network. The modified multi-scale network includes a top-down pathway and a bottom-up pathway, both of which build on the multi-scale base network. The benefits of this model are two folds: first, it can generate feature maps with high semantic information at each layer by introducing dense lateral connections from deep to shallow; second, it maintains high spatial resolution in deep layers. Comprehensive evaluations on a ship dataset and comparison with several state-of-the-art approaches demonstrate the effectiveness of the proposed network." @default.
- W2897064440 created "2018-10-26" @default.
- W2897064440 creator A5000432967 @default.
- W2897064440 creator A5039030237 @default.
- W2897064440 creator A5045603863 @default.
- W2897064440 creator A5046282236 @default.
- W2897064440 date "2018-08-01" @default.
- W2897064440 modified "2023-10-16" @default.
- W2897064440 title "Ship Detection by Modified RetinaNet" @default.
- W2897064440 cites W1970782782 @default.
- W2897064440 cites W2160921898 @default.
- W2897064440 cites W2194775991 @default.
- W2897064440 cites W2579152745 @default.
- W2897064440 cites W2768931328 @default.
- W2897064440 cites W2787630273 @default.
- W2897064440 cites W2963037989 @default.
- W2897064440 cites W2963351448 @default.
- W2897064440 doi "https://doi.org/10.1109/prrs.2018.8486308" @default.
- W2897064440 hasPublicationYear "2018" @default.
- W2897064440 type Work @default.
- W2897064440 sameAs 2897064440 @default.
- W2897064440 citedByCount "4" @default.
- W2897064440 countsByYear W28970644402019 @default.
- W2897064440 countsByYear W28970644402022 @default.
- W2897064440 countsByYear W28970644402023 @default.
- W2897064440 crossrefType "proceedings-article" @default.
- W2897064440 hasAuthorship W2897064440A5000432967 @default.
- W2897064440 hasAuthorship W2897064440A5039030237 @default.
- W2897064440 hasAuthorship W2897064440A5045603863 @default.
- W2897064440 hasAuthorship W2897064440A5046282236 @default.
- W2897064440 hasConcept C41008148 @default.
- W2897064440 hasConceptScore W2897064440C41008148 @default.
- W2897064440 hasLocation W28970644401 @default.
- W2897064440 hasOpenAccess W2897064440 @default.
- W2897064440 hasPrimaryLocation W28970644401 @default.
- W2897064440 hasRelatedWork W2093578348 @default.
- W2897064440 hasRelatedWork W2350741829 @default.
- W2897064440 hasRelatedWork W2358668433 @default.
- W2897064440 hasRelatedWork W2376932109 @default.
- W2897064440 hasRelatedWork W2382290278 @default.
- W2897064440 hasRelatedWork W2390279801 @default.
- W2897064440 hasRelatedWork W2748952813 @default.
- W2897064440 hasRelatedWork W2766271392 @default.
- W2897064440 hasRelatedWork W2899084033 @default.
- W2897064440 hasRelatedWork W3004735627 @default.
- W2897064440 isParatext "false" @default.
- W2897064440 isRetracted "false" @default.
- W2897064440 magId "2897064440" @default.
- W2897064440 workType "article" @default.