Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897068263> ?p ?o ?g. }
- W2897068263 endingPage "74" @default.
- W2897068263 startingPage "67" @default.
- W2897068263 abstract "Global deterministic process optimization problems have recently been solved efficiently in a reduced-space by automatic propagation of McCormick relaxations (Bongartz and Mitsos, J. Global Optim, 2017). However, the previous optimizations have been limited to simplified thermodynamic property models. Herein, we propose a method that learns accurate thermodynamic properties via artificial neural networks (ANNs) and integrates those in deterministic global process optimization. The resulting hybrid process model is solved using the recently developed method for deterministic global optimization problems with ANNs embedded (Schweidtmann and Mitsos, J. Optim. Theory Appl., 2018). The optimal operation of a validated steady state model of an organic Rankine cycle is solved as a case study. It is especially challenging as the thermodynamic properties are given by the implicit Helmholtz equation of state. The results show that modeling of thermodynamic properties via ANNs performs favorable in deterministic optimization. This method can rapidly be extended to include properties from existing thermodynamic libraries, based on models or data." @default.
- W2897068263 created "2018-10-26" @default.
- W2897068263 creator A5025442134 @default.
- W2897068263 creator A5026033005 @default.
- W2897068263 creator A5045091643 @default.
- W2897068263 creator A5085291703 @default.
- W2897068263 date "2019-02-01" @default.
- W2897068263 modified "2023-10-16" @default.
- W2897068263 title "Deterministic global process optimization: Accurate (single-species) properties via artificial neural networks" @default.
- W2897068263 cites W154822723 @default.
- W2897068263 cites W1967821064 @default.
- W2897068263 cites W1971059884 @default.
- W2897068263 cites W1972626743 @default.
- W2897068263 cites W1975046772 @default.
- W2897068263 cites W1981859752 @default.
- W2897068263 cites W1988622494 @default.
- W2897068263 cites W1997596685 @default.
- W2897068263 cites W2004407575 @default.
- W2897068263 cites W2032479603 @default.
- W2897068263 cites W2034320689 @default.
- W2897068263 cites W2041115671 @default.
- W2897068263 cites W2050339136 @default.
- W2897068263 cites W2063874144 @default.
- W2897068263 cites W2064374054 @default.
- W2897068263 cites W2074244069 @default.
- W2897068263 cites W2074846350 @default.
- W2897068263 cites W2134378426 @default.
- W2897068263 cites W2135536698 @default.
- W2897068263 cites W2137983211 @default.
- W2897068263 cites W2140637471 @default.
- W2897068263 cites W2146341805 @default.
- W2897068263 cites W2190485801 @default.
- W2897068263 cites W2309915927 @default.
- W2897068263 cites W2338929143 @default.
- W2897068263 cites W2478307678 @default.
- W2897068263 cites W2539694086 @default.
- W2897068263 cites W2754050691 @default.
- W2897068263 cites W2756205890 @default.
- W2897068263 cites W2788545772 @default.
- W2897068263 cites W2789525123 @default.
- W2897068263 cites W2789841081 @default.
- W2897068263 cites W2789896520 @default.
- W2897068263 cites W2791043733 @default.
- W2897068263 cites W2794268050 @default.
- W2897068263 cites W2887433804 @default.
- W2897068263 cites W4252667082 @default.
- W2897068263 doi "https://doi.org/10.1016/j.compchemeng.2018.10.007" @default.
- W2897068263 hasPublicationYear "2019" @default.
- W2897068263 type Work @default.
- W2897068263 sameAs 2897068263 @default.
- W2897068263 citedByCount "46" @default.
- W2897068263 countsByYear W28970682632019 @default.
- W2897068263 countsByYear W28970682632020 @default.
- W2897068263 countsByYear W28970682632021 @default.
- W2897068263 countsByYear W28970682632022 @default.
- W2897068263 countsByYear W28970682632023 @default.
- W2897068263 crossrefType "journal-article" @default.
- W2897068263 hasAuthorship W2897068263A5025442134 @default.
- W2897068263 hasAuthorship W2897068263A5026033005 @default.
- W2897068263 hasAuthorship W2897068263A5045091643 @default.
- W2897068263 hasAuthorship W2897068263A5085291703 @default.
- W2897068263 hasBestOaLocation W28970682631 @default.
- W2897068263 hasConcept C105795698 @default.
- W2897068263 hasConcept C111919701 @default.
- W2897068263 hasConcept C121332964 @default.
- W2897068263 hasConcept C126255220 @default.
- W2897068263 hasConcept C137836250 @default.
- W2897068263 hasConcept C154945302 @default.
- W2897068263 hasConcept C164752517 @default.
- W2897068263 hasConcept C27592594 @default.
- W2897068263 hasConcept C28826006 @default.
- W2897068263 hasConcept C33923547 @default.
- W2897068263 hasConcept C41008148 @default.
- W2897068263 hasConcept C50644808 @default.
- W2897068263 hasConcept C62520636 @default.
- W2897068263 hasConcept C72434380 @default.
- W2897068263 hasConcept C98045186 @default.
- W2897068263 hasConceptScore W2897068263C105795698 @default.
- W2897068263 hasConceptScore W2897068263C111919701 @default.
- W2897068263 hasConceptScore W2897068263C121332964 @default.
- W2897068263 hasConceptScore W2897068263C126255220 @default.
- W2897068263 hasConceptScore W2897068263C137836250 @default.
- W2897068263 hasConceptScore W2897068263C154945302 @default.
- W2897068263 hasConceptScore W2897068263C164752517 @default.
- W2897068263 hasConceptScore W2897068263C27592594 @default.
- W2897068263 hasConceptScore W2897068263C28826006 @default.
- W2897068263 hasConceptScore W2897068263C33923547 @default.
- W2897068263 hasConceptScore W2897068263C41008148 @default.
- W2897068263 hasConceptScore W2897068263C50644808 @default.
- W2897068263 hasConceptScore W2897068263C62520636 @default.
- W2897068263 hasConceptScore W2897068263C72434380 @default.
- W2897068263 hasConceptScore W2897068263C98045186 @default.
- W2897068263 hasFunder F4320321114 @default.
- W2897068263 hasFunder F4320321469 @default.
- W2897068263 hasFunder F4320323803 @default.
- W2897068263 hasLocation W28970682631 @default.
- W2897068263 hasOpenAccess W2897068263 @default.
- W2897068263 hasPrimaryLocation W28970682631 @default.