Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897069638> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2897069638 endingPage "415" @default.
- W2897069638 startingPage "411" @default.
- W2897069638 abstract "No AccessEngineering NotesElliptic Displaced Orbit Approximation with Equally Spaced ImpulsesAndrea Caruso, Giovanni Mengali and Alessandro A. QuartaAndrea CarusoUniversity of Pisa, Pisa I-56122, Italy*Ph.D. Student, Department of Civil and Industrial Engineering; .Search for more papers by this author, Giovanni MengaliUniversity of Pisa, Pisa I-56122, Italy†Professor, Department of Civil and Industrial Engineering; . Senior Member AIAA.Search for more papers by this author and Alessandro A. QuartaUniversity of Pisa, Pisa I-56122, Italy‡Professor, Department of Civil and Industrial Engineering; . Associate Fellow AIAA (Corresponding Author).Search for more papers by this authorPublished Online:22 Oct 2018https://doi.org/10.2514/1.G003900SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] McInnes C. R., “Dynamics, Stability, and Control of Displaced Non-Keplerian Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 5, 1998, pp. 799–805. doi:https://doi.org/10.2514/2.4309 JGCODS 0731-5090 LinkGoogle Scholar[2] McKay R. J., Macdonald M., Biggs J. D. and McInnes C. R., “Survey of Highly Non-Keplerian Orbits with Low-Thrust Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2011, pp. 645–666. doi:https://doi.org/10.2514/1.52133 JGCODS 0731-5090 LinkGoogle Scholar[3] Forward R. L., “Light Levitated Geostationary Cylindrical Orbits,” Journal of the Astronautical Sciences, Vol. 29, No. 1, 1981, pp. 73–80. JALSA6 0021-9142 Google Scholar[4] Forward R. L., “Light-Levitated Geostationary Cylindrical Orbits Using Perforated Light Sails,” Journal of the Astronautical Sciences, Vol. 32, April–June 1984, pp. 221–226. JALSA6 0021-9142 Google Scholar[5] Forward R. L., “Light-Levitated Geostationary Cylindrical Orbits. Correction and Expansion,” Journal of the Astronautical Sciences, Vol. 38, No. 3, 1990, pp. 335–353. JALSA6 0021-9142 Google Scholar[6] Simo J. and McInnes C. R., “Asymptotic Analysis of Displaced Lunar Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, 2009, pp. 1666–1671. doi:https://doi.org/10.2514/1.43703 JGCODS 0731-5090 LinkGoogle Scholar[7] Simo J. and McInnes C. R., “Designing Displaced Lunar Orbits Using Low-Thrust Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, 2010, pp. 259–265. doi:https://doi.org/10.2514/1.45305 JGCODS 0731-5090 LinkGoogle Scholar[8] Heiligers J., Ceriotti M., McInnes C. R. and Biggs J. D., “Displaced Geostationary Orbit Design Using Hybrid Sail Propulsion,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1852–1866. doi:https://doi.org/10.2514/1.53807 JGCODS 0731-5090 LinkGoogle Scholar[9] Gong S. and Li J., “Solar Sail Heliocentric Elliptic Displaced Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014, pp. 2021–2026. doi:https://doi.org/10.2514/1.G000660 JGCODS 0731-5090 LinkGoogle Scholar[10] Wang W., Yuan J., Mengali G. and Quarta A. A., “Invariant Manifold and Bounds of Relative Motion Between Heliocentric Displaced Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1764–1776. doi:https://doi.org/10.2514/1.G001751 JGCODS 0731-5090 LinkGoogle Scholar[11] Yashko G. J. and Hastings D. E., “Analysis of Thruster Requirements and Capabilities for Local Satellite Clusters,” 10th Annual AIAA/USU Conference on Small Satellites, Utah State Univ. Paper SSC96-VIII-4, Logan, UT, Sept. 1996, https://digitalcommons.usu.edu/smallsat/1996/all1996/49/ [retrieved 14 June 2018]. Google Scholar[12] Spilker T. R., “Saturn Ring Observer,” Acta Astronautica, Vol. 52, Nos. 2–6, Jan. 2003, pp. 259–265. doi:https://doi.org/10.1016/S0094-5765(02)00165-0 AASTCF 0094-5765 CrossrefGoogle Scholar[13] McInnes C. R., “Displaced Non-Keplerian Orbits Using Impulsive Thrust,” Celestial Mechanics and Dynamical Astronomy, Vol. 110, No. 3, July 2011, pp. 199–215. doi:https://doi.org/10.1007/s10569-011-9351-5-011-9351-5 CrossrefGoogle Scholar[14] Yamanaka K. and Ankersen F., “New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 60–66. doi:https://doi.org/10.2514/2.4875 JGCODS 0731-5090 LinkGoogle Scholar[15] Huo M., Mengali G. and Quarta A. A., “Electric Sail Thrust Model from a Geometrical Perspective,” Journal of Guidance, Control and Dynamics, Vol. 41, No. 3, 2018, pp. 735–741. doi:https://doi.org/10.2514/1.G003169 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byOptimal solar sail transfers to circular Earth-synchronous displaced orbits2 August 2019 | Astrodynamics, Vol. 4, No. 3Magnetic sail-based displaced non-Keplerian orbitsAerospace Science and Technology, Vol. 92 What's Popular Volume 42, Number 2February 2019 CrossmarkInformationCopyright © 2018 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAstronomyCelestial MechanicsDwarf PlanetsKepler's Laws of Planetary MotionOrbital ManeuversOrbital PropertyPlanetary Science and ExplorationPlanetsSpace OrbitSpace Science and Technology KeywordsOrbital EccentricityMathematical ModelsNon Keplerian OrbitSpacecraft MotionClohessy Wiltshire EquationNumerical SimulationAstronomical UnitHarmonic OscillationHeliocentric OrbitDwarf PlanetsPDF Received14 June 2018Accepted9 August 2018Published online22 October 2018" @default.
- W2897069638 created "2018-10-26" @default.
- W2897069638 creator A5050563598 @default.
- W2897069638 creator A5055411162 @default.
- W2897069638 creator A5056570001 @default.
- W2897069638 date "2019-02-01" @default.
- W2897069638 modified "2023-10-17" @default.
- W2897069638 title "Elliptic Displaced Orbit Approximation with Equally Spaced Impulses" @default.
- W2897069638 cites W1979779483 @default.
- W2897069638 cites W1984660823 @default.
- W2897069638 cites W2005653923 @default.
- W2897069638 cites W2034414096 @default.
- W2897069638 cites W2058478245 @default.
- W2897069638 cites W2071172712 @default.
- W2897069638 cites W2098286177 @default.
- W2897069638 cites W2128679681 @default.
- W2897069638 cites W2131283498 @default.
- W2897069638 cites W2465254291 @default.
- W2897069638 cites W2760896776 @default.
- W2897069638 doi "https://doi.org/10.2514/1.g003900" @default.
- W2897069638 hasPublicationYear "2019" @default.
- W2897069638 type Work @default.
- W2897069638 sameAs 2897069638 @default.
- W2897069638 citedByCount "3" @default.
- W2897069638 countsByYear W28970696382019 @default.
- W2897069638 countsByYear W28970696382023 @default.
- W2897069638 crossrefType "journal-article" @default.
- W2897069638 hasAuthorship W2897069638A5050563598 @default.
- W2897069638 hasAuthorship W2897069638A5055411162 @default.
- W2897069638 hasAuthorship W2897069638A5056570001 @default.
- W2897069638 hasBestOaLocation W28970696382 @default.
- W2897069638 hasConcept C121332964 @default.
- W2897069638 hasConcept C127313418 @default.
- W2897069638 hasConcept C127413603 @default.
- W2897069638 hasConcept C13280743 @default.
- W2897069638 hasConcept C146978453 @default.
- W2897069638 hasConcept C16405173 @default.
- W2897069638 hasConcept C178802073 @default.
- W2897069638 hasConcept C19269812 @default.
- W2897069638 hasConcept C33923547 @default.
- W2897069638 hasConcept C60808876 @default.
- W2897069638 hasConceptScore W2897069638C121332964 @default.
- W2897069638 hasConceptScore W2897069638C127313418 @default.
- W2897069638 hasConceptScore W2897069638C127413603 @default.
- W2897069638 hasConceptScore W2897069638C13280743 @default.
- W2897069638 hasConceptScore W2897069638C146978453 @default.
- W2897069638 hasConceptScore W2897069638C16405173 @default.
- W2897069638 hasConceptScore W2897069638C178802073 @default.
- W2897069638 hasConceptScore W2897069638C19269812 @default.
- W2897069638 hasConceptScore W2897069638C33923547 @default.
- W2897069638 hasConceptScore W2897069638C60808876 @default.
- W2897069638 hasIssue "2" @default.
- W2897069638 hasLocation W28970696381 @default.
- W2897069638 hasLocation W28970696382 @default.
- W2897069638 hasOpenAccess W2897069638 @default.
- W2897069638 hasPrimaryLocation W28970696381 @default.
- W2897069638 hasRelatedWork W2059596594 @default.
- W2897069638 hasRelatedWork W2073676095 @default.
- W2897069638 hasRelatedWork W3173943080 @default.
- W2897069638 hasRelatedWork W4205681888 @default.
- W2897069638 hasRelatedWork W4214820731 @default.
- W2897069638 hasRelatedWork W4232084190 @default.
- W2897069638 hasRelatedWork W4236632773 @default.
- W2897069638 hasRelatedWork W4253516823 @default.
- W2897069638 hasRelatedWork W2139951176 @default.
- W2897069638 hasRelatedWork W2576749245 @default.
- W2897069638 hasVolume "42" @default.
- W2897069638 isParatext "false" @default.
- W2897069638 isRetracted "false" @default.
- W2897069638 magId "2897069638" @default.
- W2897069638 workType "article" @default.