Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897071751> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2897071751 abstract "This work aims to study the operational scheduling of hydraulic pumps in a Treated Water Lift Station (TWLS) using computational intelligence techniques. This scheduling is very important to reduce electricity consumption of TWLS. For the experiments, a typical TWLS composed of two pumps and a reservoir is simulated. The choice of operation periods is obtained to minimize expenses with electrical energy, by means of an optimization task. From the hydraulic power spent, the TWLS electrical consumption is calculated. A factor $lambda$ is used to correlate number of pumps starts and corresponding maintenance costs. An electrical consumption function, adjusted with this maintenance factor, is used as the objective function to be optimized. In this context, two meta-heuristics are compared: Simulated Annealing (SA) and a hybrid instance of Genetic Algorithms (HGA). Both meta-heuristic approaches were chosen because the reduction of energy and maintenance expenses can be seen as a nonlinear optimization problem, in addition to both techniques being used successfully to solve several real World problems. A statistical inference based objective comparison is done between results of both algorithms, and SA showed to achieve better results. After optimizing the activities related to this scheduling, it is possible to verify a reduction of up to 28.0% in electrical energy expenses, when compared to actual non-optimized operation." @default.
- W2897071751 created "2018-10-26" @default.
- W2897071751 creator A5006915301 @default.
- W2897071751 creator A5026118236 @default.
- W2897071751 creator A5071061118 @default.
- W2897071751 creator A5090227152 @default.
- W2897071751 date "2018-07-01" @default.
- W2897071751 modified "2023-09-27" @default.
- W2897071751 title "Use of Computational Intelligence for Scheduling of Pumps in Water Distribution Systems: a comparison between optimization algorithms" @default.
- W2897071751 cites W1514936695 @default.
- W2897071751 cites W1978228947 @default.
- W2897071751 cites W2001101365 @default.
- W2897071751 cites W2002767581 @default.
- W2897071751 cites W2016769236 @default.
- W2897071751 cites W2063104570 @default.
- W2897071751 cites W2063131279 @default.
- W2897071751 cites W2085075791 @default.
- W2897071751 cites W2086123925 @default.
- W2897071751 cites W2133270423 @default.
- W2897071751 cites W2166623418 @default.
- W2897071751 cites W2279704847 @default.
- W2897071751 cites W2802343523 @default.
- W2897071751 cites W922647584 @default.
- W2897071751 doi "https://doi.org/10.1109/cec.2018.8477833" @default.
- W2897071751 hasPublicationYear "2018" @default.
- W2897071751 type Work @default.
- W2897071751 sameAs 2897071751 @default.
- W2897071751 citedByCount "0" @default.
- W2897071751 crossrefType "proceedings-article" @default.
- W2897071751 hasAuthorship W2897071751A5006915301 @default.
- W2897071751 hasAuthorship W2897071751A5026118236 @default.
- W2897071751 hasAuthorship W2897071751A5071061118 @default.
- W2897071751 hasAuthorship W2897071751A5090227152 @default.
- W2897071751 hasConcept C111919701 @default.
- W2897071751 hasConcept C11413529 @default.
- W2897071751 hasConcept C119599485 @default.
- W2897071751 hasConcept C126255220 @default.
- W2897071751 hasConcept C126980161 @default.
- W2897071751 hasConcept C127413603 @default.
- W2897071751 hasConcept C200601418 @default.
- W2897071751 hasConcept C206729178 @default.
- W2897071751 hasConcept C2780165032 @default.
- W2897071751 hasConcept C33923547 @default.
- W2897071751 hasConcept C41008148 @default.
- W2897071751 hasConcept C55416958 @default.
- W2897071751 hasConcept C68387754 @default.
- W2897071751 hasConceptScore W2897071751C111919701 @default.
- W2897071751 hasConceptScore W2897071751C11413529 @default.
- W2897071751 hasConceptScore W2897071751C119599485 @default.
- W2897071751 hasConceptScore W2897071751C126255220 @default.
- W2897071751 hasConceptScore W2897071751C126980161 @default.
- W2897071751 hasConceptScore W2897071751C127413603 @default.
- W2897071751 hasConceptScore W2897071751C200601418 @default.
- W2897071751 hasConceptScore W2897071751C206729178 @default.
- W2897071751 hasConceptScore W2897071751C2780165032 @default.
- W2897071751 hasConceptScore W2897071751C33923547 @default.
- W2897071751 hasConceptScore W2897071751C41008148 @default.
- W2897071751 hasConceptScore W2897071751C55416958 @default.
- W2897071751 hasConceptScore W2897071751C68387754 @default.
- W2897071751 hasLocation W28970717511 @default.
- W2897071751 hasOpenAccess W2897071751 @default.
- W2897071751 hasPrimaryLocation W28970717511 @default.
- W2897071751 hasRelatedWork W1970955049 @default.
- W2897071751 hasRelatedWork W1983792072 @default.
- W2897071751 hasRelatedWork W1994705672 @default.
- W2897071751 hasRelatedWork W1998354010 @default.
- W2897071751 hasRelatedWork W2016769236 @default.
- W2897071751 hasRelatedWork W2070539750 @default.
- W2897071751 hasRelatedWork W2081870710 @default.
- W2897071751 hasRelatedWork W2152004941 @default.
- W2897071751 hasRelatedWork W2367575420 @default.
- W2897071751 hasRelatedWork W2549322114 @default.
- W2897071751 hasRelatedWork W2587256854 @default.
- W2897071751 hasRelatedWork W2799907303 @default.
- W2897071751 hasRelatedWork W2810319330 @default.
- W2897071751 hasRelatedWork W2907669238 @default.
- W2897071751 hasRelatedWork W2923139546 @default.
- W2897071751 hasRelatedWork W2924122445 @default.
- W2897071751 hasRelatedWork W2967054876 @default.
- W2897071751 hasRelatedWork W3089462019 @default.
- W2897071751 hasRelatedWork W3129260550 @default.
- W2897071751 hasRelatedWork W2927125087 @default.
- W2897071751 isParatext "false" @default.
- W2897071751 isRetracted "false" @default.
- W2897071751 magId "2897071751" @default.
- W2897071751 workType "article" @default.