Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897071854> ?p ?o ?g. }
- W2897071854 abstract "The analysis of microarrays has the potential to identify and predict diseases predisposition, such as cancer, opening a new path to better diagnosis and improved treatments. Additionally, microarrays can help to find genetic biomarkers, which are genes whose expressions are related to a specific disease stage or condition. But due to the huge number of genes present in microarray experiments, and the small number of available samples, computational methods that deal with such techniques need to overcome difficulties in both classification and feature selection tasks. This paper presents adaptations for the use of FS-NEAT, an evolutionary algorithm that creates and optimizes neural networks through genetic algorithms, as a tool that can satisfactorily perform both tasks simultaneously and automatically. The method is tested with a Leukemia dataset containing six imbalanced classes, compared with other classifiers, and the selected genes are biologically validated." @default.
- W2897071854 created "2018-10-26" @default.
- W2897071854 creator A5012548285 @default.
- W2897071854 creator A5026741733 @default.
- W2897071854 creator A5081162394 @default.
- W2897071854 date "2018-07-01" @default.
- W2897071854 modified "2023-09-26" @default.
- W2897071854 title "Microarray Classification and Gene Selection with FS-NEAT" @default.
- W2897071854 cites W1493801922 @default.
- W2897071854 cites W1520812622 @default.
- W2897071854 cites W1548779692 @default.
- W2897071854 cites W1593845303 @default.
- W2897071854 cites W1976693834 @default.
- W2897071854 cites W1981585706 @default.
- W2897071854 cites W1985958957 @default.
- W2897071854 cites W1987389010 @default.
- W2897071854 cites W1988244974 @default.
- W2897071854 cites W2004915807 @default.
- W2897071854 cites W2007176121 @default.
- W2897071854 cites W2018906282 @default.
- W2897071854 cites W2025554858 @default.
- W2897071854 cites W2053481403 @default.
- W2897071854 cites W2055173792 @default.
- W2897071854 cites W2067878879 @default.
- W2897071854 cites W2071441967 @default.
- W2897071854 cites W2080758054 @default.
- W2897071854 cites W2088337738 @default.
- W2897071854 cites W2096232175 @default.
- W2897071854 cites W2099688399 @default.
- W2897071854 cites W2100701400 @default.
- W2897071854 cites W2111935653 @default.
- W2897071854 cites W2131822674 @default.
- W2897071854 cites W2131987814 @default.
- W2897071854 cites W2138218344 @default.
- W2897071854 cites W2152026370 @default.
- W2897071854 cites W2154053567 @default.
- W2897071854 cites W2189101311 @default.
- W2897071854 cites W2227376894 @default.
- W2897071854 cites W2317494768 @default.
- W2897071854 cites W2344681634 @default.
- W2897071854 cites W2506743715 @default.
- W2897071854 cites W2529448842 @default.
- W2897071854 cites W2531874824 @default.
- W2897071854 cites W2536987917 @default.
- W2897071854 cites W2562498401 @default.
- W2897071854 cites W2563762664 @default.
- W2897071854 cites W2594429093 @default.
- W2897071854 cites W2596110100 @default.
- W2897071854 cites W2601673299 @default.
- W2897071854 cites W2725472906 @default.
- W2897071854 cites W2734473668 @default.
- W2897071854 cites W2745653287 @default.
- W2897071854 cites W2755934398 @default.
- W2897071854 cites W2759962468 @default.
- W2897071854 cites W37714309 @default.
- W2897071854 cites W4238404964 @default.
- W2897071854 doi "https://doi.org/10.1109/cec.2018.8477813" @default.
- W2897071854 hasPublicationYear "2018" @default.
- W2897071854 type Work @default.
- W2897071854 sameAs 2897071854 @default.
- W2897071854 citedByCount "2" @default.
- W2897071854 countsByYear W28970718542020 @default.
- W2897071854 countsByYear W28970718542022 @default.
- W2897071854 crossrefType "proceedings-article" @default.
- W2897071854 hasAuthorship W2897071854A5012548285 @default.
- W2897071854 hasAuthorship W2897071854A5026741733 @default.
- W2897071854 hasAuthorship W2897071854A5081162394 @default.
- W2897071854 hasConcept C104317684 @default.
- W2897071854 hasConcept C119857082 @default.
- W2897071854 hasConcept C148483581 @default.
- W2897071854 hasConcept C150194340 @default.
- W2897071854 hasConcept C153180895 @default.
- W2897071854 hasConcept C154945302 @default.
- W2897071854 hasConcept C186836561 @default.
- W2897071854 hasConcept C2984324147 @default.
- W2897071854 hasConcept C41008148 @default.
- W2897071854 hasConcept C50644808 @default.
- W2897071854 hasConcept C54355233 @default.
- W2897071854 hasConcept C81917197 @default.
- W2897071854 hasConcept C8415881 @default.
- W2897071854 hasConcept C86803240 @default.
- W2897071854 hasConcept C95371953 @default.
- W2897071854 hasConceptScore W2897071854C104317684 @default.
- W2897071854 hasConceptScore W2897071854C119857082 @default.
- W2897071854 hasConceptScore W2897071854C148483581 @default.
- W2897071854 hasConceptScore W2897071854C150194340 @default.
- W2897071854 hasConceptScore W2897071854C153180895 @default.
- W2897071854 hasConceptScore W2897071854C154945302 @default.
- W2897071854 hasConceptScore W2897071854C186836561 @default.
- W2897071854 hasConceptScore W2897071854C2984324147 @default.
- W2897071854 hasConceptScore W2897071854C41008148 @default.
- W2897071854 hasConceptScore W2897071854C50644808 @default.
- W2897071854 hasConceptScore W2897071854C54355233 @default.
- W2897071854 hasConceptScore W2897071854C81917197 @default.
- W2897071854 hasConceptScore W2897071854C8415881 @default.
- W2897071854 hasConceptScore W2897071854C86803240 @default.
- W2897071854 hasConceptScore W2897071854C95371953 @default.
- W2897071854 hasLocation W28970718541 @default.
- W2897071854 hasOpenAccess W2897071854 @default.
- W2897071854 hasPrimaryLocation W28970718541 @default.