Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897073800> ?p ?o ?g. }
- W2897073800 endingPage "1496" @default.
- W2897073800 startingPage "1482" @default.
- W2897073800 abstract "Core Ideas First rigorous integration of VisNIR and LIBS spectroscopic techniques for soil profile C measurement. Field‐moist intact soil cores scanned with LIBS and VisNIR simulating in situ measurements. Combined VisNIR‐LIBS wavelengths selected by MRCE were split nearly equally between sensors, suggesting molecular and elemental information was successfully integrated for predicting TC, IC, and SOC. Stoichiometric relationships in LIBS elemental emissions are more strongly correlated to IC concentration than were carbonate absorptions in VisNIR. Lack of variation and consistent, definable chemical composition and stoichiometry likely contributed to poor LIBS and combined VisNIR – LIBS prediction accuracy for SOC. Soil organic carbon (SOC) measurement is critically important to quantify regional and global soil C stocks and better understand soil C biogeochemical processes. Recent studies employing laser‐induced breakdown spectroscopy (LIBS) and visible‐near infrared diffuse reflectance spectroscopy (vis–NIRS) indicate their potential for in situ soil C determination. Visible and near infrared diffuse reflectance spectroscopy and LIBS spectroscopy fundamentally differ and we hypothesize that their integration would provide improved soil C predictions. We report the first rigorous integration of vis–NIRS and LIBS, evaluating the precision of vis–NIRS, LIBS, and combined vis–NIRS‐LIBS spectra for simulated in situ soil profile total C (TC), inorganic C (IC) and SOC measurement. Three multivariate variable selection and regression approaches were evaluated for soil C prediction. The highest soil C prediction accuracies were observed using multivariate regression with covariance estimation (MRCE). Inorganic C was best predicted by LIBS, vis–NIRS provided better SOC predictions, and TC was best predicted using combined vis–NIRS‐LIBS data. Combined vis–NIRS‐LIBS did not consistently increase soil C prediction accuracy. Soil organic C was not well predicted, presumably due to challenges associated with scanning surfaces of intact soil cores, variable SOC chemistries, and low SOC variation in the dataset. Considering the challenging conditions under which combined vis–NIRS– LIBS was tested for soil C measurement, data integration and model calibrations had acceptable performance. Further testing under more controlled soil conditions with samples containing greater SOC diversity is necessary to determine the technical potential of combined vis–NIRS/LIBS for soil C determination." @default.
- W2897073800 created "2018-10-26" @default.
- W2897073800 creator A5026546058 @default.
- W2897073800 creator A5047649700 @default.
- W2897073800 creator A5066134262 @default.
- W2897073800 creator A5066233270 @default.
- W2897073800 date "2018-10-18" @default.
- W2897073800 modified "2023-10-06" @default.
- W2897073800 title "Comparing vis–NIRS, LIBS, and Combined vis–NIRS‐LIBS for Intact Soil Core Soil Carbon Measurement" @default.
- W2897073800 cites W1493454437 @default.
- W2897073800 cites W1966091338 @default.
- W2897073800 cites W1967050166 @default.
- W2897073800 cites W1967417734 @default.
- W2897073800 cites W1981768708 @default.
- W2897073800 cites W1981793369 @default.
- W2897073800 cites W1986239215 @default.
- W2897073800 cites W1986530877 @default.
- W2897073800 cites W1989112421 @default.
- W2897073800 cites W1992800046 @default.
- W2897073800 cites W1993971389 @default.
- W2897073800 cites W1995676707 @default.
- W2897073800 cites W1997287413 @default.
- W2897073800 cites W2004720574 @default.
- W2897073800 cites W2005460036 @default.
- W2897073800 cites W2005702156 @default.
- W2897073800 cites W2007365900 @default.
- W2897073800 cites W2013294138 @default.
- W2897073800 cites W2016376046 @default.
- W2897073800 cites W2018135328 @default.
- W2897073800 cites W2019942469 @default.
- W2897073800 cites W2024355689 @default.
- W2897073800 cites W2030098734 @default.
- W2897073800 cites W2039511540 @default.
- W2897073800 cites W2040171875 @default.
- W2897073800 cites W2044285941 @default.
- W2897073800 cites W2046111076 @default.
- W2897073800 cites W2048594976 @default.
- W2897073800 cites W2051574590 @default.
- W2897073800 cites W2052903566 @default.
- W2897073800 cites W2059414143 @default.
- W2897073800 cites W2067823858 @default.
- W2897073800 cites W2068253462 @default.
- W2897073800 cites W2073460680 @default.
- W2897073800 cites W2073503722 @default.
- W2897073800 cites W2081273356 @default.
- W2897073800 cites W2081531193 @default.
- W2897073800 cites W2082289296 @default.
- W2897073800 cites W2084070176 @default.
- W2897073800 cites W2088027324 @default.
- W2897073800 cites W2088165432 @default.
- W2897073800 cites W2088808017 @default.
- W2897073800 cites W2093668679 @default.
- W2897073800 cites W2095414472 @default.
- W2897073800 cites W2101337509 @default.
- W2897073800 cites W2135046866 @default.
- W2897073800 cites W2140959043 @default.
- W2897073800 cites W2142606975 @default.
- W2897073800 cites W214276163 @default.
- W2897073800 cites W2158551840 @default.
- W2897073800 cites W2158863190 @default.
- W2897073800 cites W2163027738 @default.
- W2897073800 cites W2165993842 @default.
- W2897073800 cites W2484913202 @default.
- W2897073800 cites W2493503649 @default.
- W2897073800 cites W2493637273 @default.
- W2897073800 cites W2563285874 @default.
- W2897073800 cites W2564851047 @default.
- W2897073800 cites W2590599739 @default.
- W2897073800 cites W2787894218 @default.
- W2897073800 cites W4294541781 @default.
- W2897073800 doi "https://doi.org/10.2136/sssaj2017.09.0332" @default.
- W2897073800 hasPublicationYear "2018" @default.
- W2897073800 type Work @default.
- W2897073800 sameAs 2897073800 @default.
- W2897073800 citedByCount "26" @default.
- W2897073800 countsByYear W28970738002019 @default.
- W2897073800 countsByYear W28970738002020 @default.
- W2897073800 countsByYear W28970738002021 @default.
- W2897073800 countsByYear W28970738002022 @default.
- W2897073800 countsByYear W28970738002023 @default.
- W2897073800 crossrefType "journal-article" @default.
- W2897073800 hasAuthorship W2897073800A5026546058 @default.
- W2897073800 hasAuthorship W2897073800A5047649700 @default.
- W2897073800 hasAuthorship W2897073800A5066134262 @default.
- W2897073800 hasAuthorship W2897073800A5066233270 @default.
- W2897073800 hasBestOaLocation W28970738001 @default.
- W2897073800 hasConcept C105795698 @default.
- W2897073800 hasConcept C107872376 @default.
- W2897073800 hasConcept C113196181 @default.
- W2897073800 hasConcept C121332964 @default.
- W2897073800 hasConcept C156328458 @default.
- W2897073800 hasConcept C159390177 @default.
- W2897073800 hasConcept C159750122 @default.
- W2897073800 hasConcept C161790260 @default.
- W2897073800 hasConcept C182124840 @default.
- W2897073800 hasConcept C185592680 @default.
- W2897073800 hasConcept C192562407 @default.
- W2897073800 hasConcept C22354355 @default.