Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897074237> ?p ?o ?g. }
- W2897074237 abstract "Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance." @default.
- W2897074237 created "2018-10-26" @default.
- W2897074237 creator A5004784003 @default.
- W2897074237 creator A5014449192 @default.
- W2897074237 creator A5017748295 @default.
- W2897074237 creator A5038668215 @default.
- W2897074237 creator A5051925942 @default.
- W2897074237 creator A5066140774 @default.
- W2897074237 creator A5087631670 @default.
- W2897074237 creator A5089404640 @default.
- W2897074237 date "2018-10-11" @default.
- W2897074237 modified "2023-10-18" @default.
- W2897074237 title "Hierarchical Attention Network for Visually-aware Food Recommendation" @default.
- W2897074237 cites W12634471 @default.
- W2897074237 cites W1971460256 @default.
- W2897074237 cites W1991847815 @default.
- W2897074237 cites W2002834872 @default.
- W2897074237 cites W2058194262 @default.
- W2897074237 cites W2058837810 @default.
- W2897074237 cites W2069782686 @default.
- W2897074237 cites W2094286023 @default.
- W2897074237 cites W2108598243 @default.
- W2897074237 cites W2124095343 @default.
- W2897074237 cites W2125143698 @default.
- W2897074237 cites W2140310134 @default.
- W2897074237 cites W2146502635 @default.
- W2897074237 cites W2163969215 @default.
- W2897074237 cites W2194775991 @default.
- W2897074237 cites W2210549170 @default.
- W2897074237 cites W2236282269 @default.
- W2897074237 cites W2340502990 @default.
- W2897074237 cites W2405228752 @default.
- W2897074237 cites W2466671568 @default.
- W2897074237 cites W2470357003 @default.
- W2897074237 cites W2470673105 @default.
- W2897074237 cites W2473408579 @default.
- W2897074237 cites W2501823910 @default.
- W2897074237 cites W2511134733 @default.
- W2897074237 cites W2526198870 @default.
- W2897074237 cites W2529459268 @default.
- W2897074237 cites W2562417371 @default.
- W2897074237 cites W2583892095 @default.
- W2897074237 cites W2604325789 @default.
- W2897074237 cites W2604438604 @default.
- W2897074237 cites W2604671115 @default.
- W2897074237 cites W2605350416 @default.
- W2897074237 cites W2621284177 @default.
- W2897074237 cites W2626473670 @default.
- W2897074237 cites W2728515412 @default.
- W2897074237 cites W2740885325 @default.
- W2897074237 cites W2741249238 @default.
- W2897074237 cites W2761189739 @default.
- W2897074237 cites W2765707332 @default.
- W2897074237 cites W2766563141 @default.
- W2897074237 cites W2777712566 @default.
- W2897074237 cites W2788730650 @default.
- W2897074237 cites W2798868970 @default.
- W2897074237 cites W2884134047 @default.
- W2897074237 cites W2897152025 @default.
- W2897074237 cites W2962705258 @default.
- W2897074237 cites W2963207245 @default.
- W2897074237 cites W2963217233 @default.
- W2897074237 cites W2963655167 @default.
- W2897074237 cites W2963918631 @default.
- W2897074237 cites W2964308564 @default.
- W2897074237 cites W3101830194 @default.
- W2897074237 doi "https://doi.org/10.48550/arxiv.1810.05032" @default.
- W2897074237 hasPublicationYear "2018" @default.
- W2897074237 type Work @default.
- W2897074237 sameAs 2897074237 @default.
- W2897074237 citedByCount "0" @default.
- W2897074237 crossrefType "posted-content" @default.
- W2897074237 hasAuthorship W2897074237A5004784003 @default.
- W2897074237 hasAuthorship W2897074237A5014449192 @default.
- W2897074237 hasAuthorship W2897074237A5017748295 @default.
- W2897074237 hasAuthorship W2897074237A5038668215 @default.
- W2897074237 hasAuthorship W2897074237A5051925942 @default.
- W2897074237 hasAuthorship W2897074237A5066140774 @default.
- W2897074237 hasAuthorship W2897074237A5087631670 @default.
- W2897074237 hasAuthorship W2897074237A5089404640 @default.
- W2897074237 hasBestOaLocation W28970742371 @default.
- W2897074237 hasConcept C105795698 @default.
- W2897074237 hasConcept C111919701 @default.
- W2897074237 hasConcept C119857082 @default.
- W2897074237 hasConcept C136764020 @default.
- W2897074237 hasConcept C142724271 @default.
- W2897074237 hasConcept C154945302 @default.
- W2897074237 hasConcept C166957645 @default.
- W2897074237 hasConcept C181204326 @default.
- W2897074237 hasConcept C183003079 @default.
- W2897074237 hasConcept C18767781 @default.
- W2897074237 hasConcept C189430467 @default.
- W2897074237 hasConcept C199360897 @default.
- W2897074237 hasConcept C205649164 @default.
- W2897074237 hasConcept C21569690 @default.
- W2897074237 hasConcept C23123220 @default.
- W2897074237 hasConcept C2778671685 @default.
- W2897074237 hasConcept C2780801425 @default.
- W2897074237 hasConcept C2781249084 @default.
- W2897074237 hasConcept C33923547 @default.