Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897075163> ?p ?o ?g. }
- W2897075163 endingPage "1789" @default.
- W2897075163 startingPage "1789" @default.
- W2897075163 abstract "Improving air quality and reducing human exposure to unhealthy levels of airborne chemicals are important global missions, particularly in China. Satellite remote sensing offers a powerful tool to examine regional trends in NO2, thus providing a direct measure of key parameters that strongly affect surface air quality. To accurately resolve spatial gradients in NO2 concentration using satellite observations and thus understand local and regional aspects of air quality, a priori input data at sufficiently high spatial and temporal resolution to account for pixel-to-pixel variability in the characteristics of the land and atmosphere are required. In this paper, we adapt the Berkeley High Resolution product (BEHR-HK) and meteorological outputs from the Weather Research and Forecasting (WRF) model to describe column NO2 in southern China. The BEHR approach is particularly useful for places with large spatial variabilities and terrain height differences such as China. There are two major objectives and goals: (1) developing new BEHR-HK v3.0C product for retrieving tropospheric NO2 vertical column density (TVCD) within part of southern China, for four months of 2015, based upon satellite datasets from Ozone Monitoring Instrument (OMI); and (2) evaluating BEHR-HK v3.0C retrieval result through validation, by comparing with MAX-DOAS tropospheric column measurements conducted in Guangzhou. Results show that all BEHR-HK retrieval algorithms (with R-value of 0.9839 for v3.0C) are of higher consistency with MAX-DOAS measurements than OMI-NASA retrieval (with R-value of 0.7644). This opens new windows into research questions that require high spatial resolution, for example retrieving NO2 vertical column and ground pollutant concentration in China and other countries." @default.
- W2897075163 created "2018-10-26" @default.
- W2897075163 creator A5006229220 @default.
- W2897075163 creator A5028330542 @default.
- W2897075163 creator A5050098004 @default.
- W2897075163 creator A5050711870 @default.
- W2897075163 creator A5083249450 @default.
- W2897075163 date "2018-11-12" @default.
- W2897075163 modified "2023-09-30" @default.
- W2897075163 title "Improved Satellite Retrieval of Tropospheric NO2 Column Density via Updating of Air Mass Factor (AMF): Case Study of Southern China" @default.
- W2897075163 cites W1536962386 @default.
- W2897075163 cites W1804144495 @default.
- W2897075163 cites W1844359023 @default.
- W2897075163 cites W1916122145 @default.
- W2897075163 cites W1969910140 @default.
- W2897075163 cites W1972193764 @default.
- W2897075163 cites W1973639822 @default.
- W2897075163 cites W2005125457 @default.
- W2897075163 cites W2026616338 @default.
- W2897075163 cites W2028758259 @default.
- W2897075163 cites W2028979275 @default.
- W2897075163 cites W2063207968 @default.
- W2897075163 cites W2064131631 @default.
- W2897075163 cites W2070167612 @default.
- W2897075163 cites W2078869657 @default.
- W2897075163 cites W2083339292 @default.
- W2897075163 cites W2091980009 @default.
- W2897075163 cites W2093593677 @default.
- W2897075163 cites W2101615306 @default.
- W2897075163 cites W2102873395 @default.
- W2897075163 cites W2104804203 @default.
- W2897075163 cites W2119007429 @default.
- W2897075163 cites W2129437219 @default.
- W2897075163 cites W2135791536 @default.
- W2897075163 cites W2151868249 @default.
- W2897075163 cites W2153992435 @default.
- W2897075163 cites W2155262384 @default.
- W2897075163 cites W2162070159 @default.
- W2897075163 cites W2163561498 @default.
- W2897075163 cites W2164501544 @default.
- W2897075163 cites W2170692539 @default.
- W2897075163 cites W2178168198 @default.
- W2897075163 cites W2178333445 @default.
- W2897075163 cites W2179912439 @default.
- W2897075163 cites W2312602772 @default.
- W2897075163 cites W2345036452 @default.
- W2897075163 cites W2472041040 @default.
- W2897075163 cites W2508574832 @default.
- W2897075163 cites W2596329480 @default.
- W2897075163 cites W2602832869 @default.
- W2897075163 cites W2743334063 @default.
- W2897075163 cites W2774199024 @default.
- W2897075163 cites W2789427148 @default.
- W2897075163 cites W4232826241 @default.
- W2897075163 cites W4248128354 @default.
- W2897075163 doi "https://doi.org/10.3390/rs10111789" @default.
- W2897075163 hasPublicationYear "2018" @default.
- W2897075163 type Work @default.
- W2897075163 sameAs 2897075163 @default.
- W2897075163 citedByCount "13" @default.
- W2897075163 countsByYear W28970751632019 @default.
- W2897075163 countsByYear W28970751632020 @default.
- W2897075163 countsByYear W28970751632021 @default.
- W2897075163 countsByYear W28970751632022 @default.
- W2897075163 crossrefType "journal-article" @default.
- W2897075163 hasAuthorship W2897075163A5006229220 @default.
- W2897075163 hasAuthorship W2897075163A5028330542 @default.
- W2897075163 hasAuthorship W2897075163A5050098004 @default.
- W2897075163 hasAuthorship W2897075163A5050711870 @default.
- W2897075163 hasAuthorship W2897075163A5083249450 @default.
- W2897075163 hasBestOaLocation W28970751631 @default.
- W2897075163 hasConcept C126314574 @default.
- W2897075163 hasConcept C127413603 @default.
- W2897075163 hasConcept C133204551 @default.
- W2897075163 hasConcept C146978453 @default.
- W2897075163 hasConcept C153294291 @default.
- W2897075163 hasConcept C161840515 @default.
- W2897075163 hasConcept C19269812 @default.
- W2897075163 hasConcept C205649164 @default.
- W2897075163 hasConcept C2776349674 @default.
- W2897075163 hasConcept C2779118152 @default.
- W2897075163 hasConcept C39432304 @default.
- W2897075163 hasConcept C58640448 @default.
- W2897075163 hasConcept C62649853 @default.
- W2897075163 hasConcept C9075549 @default.
- W2897075163 hasConceptScore W2897075163C126314574 @default.
- W2897075163 hasConceptScore W2897075163C127413603 @default.
- W2897075163 hasConceptScore W2897075163C133204551 @default.
- W2897075163 hasConceptScore W2897075163C146978453 @default.
- W2897075163 hasConceptScore W2897075163C153294291 @default.
- W2897075163 hasConceptScore W2897075163C161840515 @default.
- W2897075163 hasConceptScore W2897075163C19269812 @default.
- W2897075163 hasConceptScore W2897075163C205649164 @default.
- W2897075163 hasConceptScore W2897075163C2776349674 @default.
- W2897075163 hasConceptScore W2897075163C2779118152 @default.
- W2897075163 hasConceptScore W2897075163C39432304 @default.
- W2897075163 hasConceptScore W2897075163C58640448 @default.
- W2897075163 hasConceptScore W2897075163C62649853 @default.