Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897077144> ?p ?o ?g. }
- W2897077144 abstract "In individually randomised trials we might expect interventions delivered in groups or by care providers to result in clustering of outcomes for participants treated in the same group or by the same care provider. In partially nested randomised controlled trials (pnRCTs) this clustering only occurs in one trial arm, commonly the intervention arm. It is important to measure and account for between-cluster variability in trial design and analysis. We compare analysis approaches for pnRCTs with continuous outcomes, investigating the impact on statistical inference of cluster sizes, coding of the non-clustered arm, intracluster correlation coefficient (ICCs), and differential variance between intervention and control arm, and provide recommendations for analysis.We performed a simulation study assessing the performance of six analysis approaches for a two-arm pnRCT with a continuous outcome. These include: linear regression model; fully clustered mixed-effects model with singleton clusters in control arm; fully clustered mixed-effects model with one large cluster in control arm; fully clustered mixed-effects model with pseudo clusters in control arm; partially nested homoscedastic mixed effects model, and partially nested heteroscedastic mixed effects model. We varied the cluster size, number of clusters, ICC, and individual variance between the two trial arms.All models provided unbiased intervention effect estimates. In the partially nested mixed-effects models, methods for classifying the non-clustered control arm had negligible impact. Failure to account for even small ICCs resulted in inflated Type I error rates and over-coverage of confidence intervals. Fully clustered mixed effects models provided poor control of the Type I error rates and biased ICC estimates. The heteroscedastic partially nested mixed-effects model maintained relatively good control of Type I error rates, unbiased ICC estimation, and did not noticeably reduce power even with homoscedastic individual variances across arms.In general, we recommend the use of a heteroscedastic partially nested mixed-effects model, which models the clustering in only one arm, for continuous outcomes similar to those generated under the scenarios of our simulations study. However, with few clusters (3-6), small cluster sizes (5-10), and small ICC (≤0.05) this model underestimates Type I error rates and there is no optimal model." @default.
- W2897077144 created "2018-10-26" @default.
- W2897077144 creator A5007397432 @default.
- W2897077144 creator A5036780526 @default.
- W2897077144 creator A5039858933 @default.
- W2897077144 creator A5040862124 @default.
- W2897077144 creator A5040950914 @default.
- W2897077144 creator A5087649946 @default.
- W2897077144 date "2018-10-11" @default.
- W2897077144 modified "2023-10-06" @default.
- W2897077144 title "Appropriate statistical methods for analysing partially nested randomised controlled trials with continuous outcomes: a simulation study" @default.
- W2897077144 cites W1609135795 @default.
- W2897077144 cites W1972804510 @default.
- W2897077144 cites W1981042166 @default.
- W2897077144 cites W1995755913 @default.
- W2897077144 cites W2055680805 @default.
- W2897077144 cites W2057342028 @default.
- W2897077144 cites W2086733802 @default.
- W2897077144 cites W2093029291 @default.
- W2897077144 cites W2095967516 @default.
- W2897077144 cites W2102330235 @default.
- W2897077144 cites W2108046083 @default.
- W2897077144 cites W2113253256 @default.
- W2897077144 cites W2120996482 @default.
- W2897077144 cites W2126939865 @default.
- W2897077144 cites W2134120248 @default.
- W2897077144 cites W2134597096 @default.
- W2897077144 cites W2139051974 @default.
- W2897077144 cites W2144018745 @default.
- W2897077144 cites W2153247789 @default.
- W2897077144 cites W2159012776 @default.
- W2897077144 cites W2238327058 @default.
- W2897077144 cites W2332756554 @default.
- W2897077144 cites W2498863690 @default.
- W2897077144 cites W2515120484 @default.
- W2897077144 cites W2559536423 @default.
- W2897077144 cites W2883278607 @default.
- W2897077144 cites W4242289937 @default.
- W2897077144 doi "https://doi.org/10.1186/s12874-018-0559-x" @default.
- W2897077144 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6186141" @default.
- W2897077144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30314463" @default.
- W2897077144 hasPublicationYear "2018" @default.
- W2897077144 type Work @default.
- W2897077144 sameAs 2897077144 @default.
- W2897077144 citedByCount "28" @default.
- W2897077144 countsByYear W28970771442020 @default.
- W2897077144 countsByYear W28970771442021 @default.
- W2897077144 countsByYear W28970771442022 @default.
- W2897077144 countsByYear W28970771442023 @default.
- W2897077144 crossrefType "journal-article" @default.
- W2897077144 hasAuthorship W2897077144A5007397432 @default.
- W2897077144 hasAuthorship W2897077144A5036780526 @default.
- W2897077144 hasAuthorship W2897077144A5039858933 @default.
- W2897077144 hasAuthorship W2897077144A5040862124 @default.
- W2897077144 hasAuthorship W2897077144A5040950914 @default.
- W2897077144 hasAuthorship W2897077144A5087649946 @default.
- W2897077144 hasBestOaLocation W28970771441 @default.
- W2897077144 hasConcept C101104100 @default.
- W2897077144 hasConcept C105795698 @default.
- W2897077144 hasConcept C126322002 @default.
- W2897077144 hasConcept C129848803 @default.
- W2897077144 hasConcept C141071460 @default.
- W2897077144 hasConcept C153720581 @default.
- W2897077144 hasConcept C16012445 @default.
- W2897077144 hasConcept C164866538 @default.
- W2897077144 hasConcept C168563851 @default.
- W2897077144 hasConcept C168743327 @default.
- W2897077144 hasConcept C176400912 @default.
- W2897077144 hasConcept C199360897 @default.
- W2897077144 hasConcept C33923547 @default.
- W2897077144 hasConcept C40696583 @default.
- W2897077144 hasConcept C41008148 @default.
- W2897077144 hasConcept C44249647 @default.
- W2897077144 hasConcept C71924100 @default.
- W2897077144 hasConcept C73555534 @default.
- W2897077144 hasConcept C95190672 @default.
- W2897077144 hasConceptScore W2897077144C101104100 @default.
- W2897077144 hasConceptScore W2897077144C105795698 @default.
- W2897077144 hasConceptScore W2897077144C126322002 @default.
- W2897077144 hasConceptScore W2897077144C129848803 @default.
- W2897077144 hasConceptScore W2897077144C141071460 @default.
- W2897077144 hasConceptScore W2897077144C153720581 @default.
- W2897077144 hasConceptScore W2897077144C16012445 @default.
- W2897077144 hasConceptScore W2897077144C164866538 @default.
- W2897077144 hasConceptScore W2897077144C168563851 @default.
- W2897077144 hasConceptScore W2897077144C168743327 @default.
- W2897077144 hasConceptScore W2897077144C176400912 @default.
- W2897077144 hasConceptScore W2897077144C199360897 @default.
- W2897077144 hasConceptScore W2897077144C33923547 @default.
- W2897077144 hasConceptScore W2897077144C40696583 @default.
- W2897077144 hasConceptScore W2897077144C41008148 @default.
- W2897077144 hasConceptScore W2897077144C44249647 @default.
- W2897077144 hasConceptScore W2897077144C71924100 @default.
- W2897077144 hasConceptScore W2897077144C73555534 @default.
- W2897077144 hasConceptScore W2897077144C95190672 @default.
- W2897077144 hasIssue "1" @default.
- W2897077144 hasLocation W28970771441 @default.
- W2897077144 hasLocation W28970771442 @default.
- W2897077144 hasLocation W28970771443 @default.
- W2897077144 hasLocation W28970771444 @default.