Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897099497> ?p ?o ?g. }
- W2897099497 endingPage "673" @default.
- W2897099497 startingPage "666" @default.
- W2897099497 abstract "Quasiparticle energies and fundamental band gaps in particular are critical properties of molecules and materials. It was rigorously established that the generalized Kohn–Sham HOMO and LUMO orbital energies are the chemical potentials of electron removal and addition and thus good approximations to band edges and fundamental gaps from a density functional approximation (DFA) with minimal delocalization error. For other quasiparticle energies, their connection to the generalized Kohn–Sham orbital energies has not been established but remains highly interesting. We provide the comparison of experimental quasiparticle energies for many finite systems with calculations from the GW Green function and localized orbitals scaling correction (LOSC), a recently developed correction to semilocal DFAs, which has minimal delocalization error. Extensive results with over 40 systems clearly show that LOSC orbital energies achieve slightly better accuracy than the GW calculations with little dependence on the semilocal DFA, supporting the use of LOSC DFA orbital energies to predict quasiparticle energies. This also leads to the calculations of excitation energies of the N-electron systems from the ground state DFA calculations of the (N – 1)-electron systems. Results show good performance with accuracy similar to TDDFT and the delta SCF approach for valence excitations with commonly used DFAs with or without LOSC. For Rydberg states, good accuracy was obtained only with the use of LOSC DFA. This work highlights the pathway to quasiparticle and excitation energies from ground density functional calculations." @default.
- W2897099497 created "2018-10-26" @default.
- W2897099497 creator A5012974401 @default.
- W2897099497 creator A5019365851 @default.
- W2897099497 creator A5032447166 @default.
- W2897099497 creator A5057135941 @default.
- W2897099497 date "2018-12-27" @default.
- W2897099497 modified "2023-10-16" @default.
- W2897099497 title "Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn–Sham Calculations" @default.
- W2897099497 cites W1756216110 @default.
- W2897099497 cites W1963879590 @default.
- W2897099497 cites W1964968027 @default.
- W2897099497 cites W1968229562 @default.
- W2897099497 cites W1968633753 @default.
- W2897099497 cites W1968852995 @default.
- W2897099497 cites W1970512969 @default.
- W2897099497 cites W1971671866 @default.
- W2897099497 cites W1977462511 @default.
- W2897099497 cites W1980197072 @default.
- W2897099497 cites W1981368803 @default.
- W2897099497 cites W1983856161 @default.
- W2897099497 cites W1986892587 @default.
- W2897099497 cites W1991300868 @default.
- W2897099497 cites W1991713655 @default.
- W2897099497 cites W1993506739 @default.
- W2897099497 cites W1995070176 @default.
- W2897099497 cites W1995070318 @default.
- W2897099497 cites W1995591210 @default.
- W2897099497 cites W1996116070 @default.
- W2897099497 cites W1996943850 @default.
- W2897099497 cites W1997641598 @default.
- W2897099497 cites W2001177502 @default.
- W2897099497 cites W2002651440 @default.
- W2897099497 cites W2004007900 @default.
- W2897099497 cites W2005730902 @default.
- W2897099497 cites W2005937229 @default.
- W2897099497 cites W2006118143 @default.
- W2897099497 cites W2007553616 @default.
- W2897099497 cites W2010790627 @default.
- W2897099497 cites W2011327487 @default.
- W2897099497 cites W2012279747 @default.
- W2897099497 cites W2012778107 @default.
- W2897099497 cites W2017882766 @default.
- W2897099497 cites W2020277473 @default.
- W2897099497 cites W2023271753 @default.
- W2897099497 cites W2026498919 @default.
- W2897099497 cites W2028054907 @default.
- W2897099497 cites W2028974637 @default.
- W2897099497 cites W2030976617 @default.
- W2897099497 cites W2036860653 @default.
- W2897099497 cites W2037736786 @default.
- W2897099497 cites W2038533471 @default.
- W2897099497 cites W2041527286 @default.
- W2897099497 cites W2041956673 @default.
- W2897099497 cites W2042490355 @default.
- W2897099497 cites W2046027452 @default.
- W2897099497 cites W2046668457 @default.
- W2897099497 cites W2047529113 @default.
- W2897099497 cites W2048401499 @default.
- W2897099497 cites W2050056663 @default.
- W2897099497 cites W2052612716 @default.
- W2897099497 cites W2053171774 @default.
- W2897099497 cites W2053499780 @default.
- W2897099497 cites W2054063571 @default.
- W2897099497 cites W2055325187 @default.
- W2897099497 cites W2055837606 @default.
- W2897099497 cites W2058398316 @default.
- W2897099497 cites W2064149169 @default.
- W2897099497 cites W2065953729 @default.
- W2897099497 cites W2069197437 @default.
- W2897099497 cites W2075103166 @default.
- W2897099497 cites W2076563191 @default.
- W2897099497 cites W2084003393 @default.
- W2897099497 cites W2084053963 @default.
- W2897099497 cites W2085488845 @default.
- W2897099497 cites W2086458318 @default.
- W2897099497 cites W2086957099 @default.
- W2897099497 cites W2088233117 @default.
- W2897099497 cites W2095100262 @default.
- W2897099497 cites W2098658310 @default.
- W2897099497 cites W2127887268 @default.
- W2897099497 cites W2140467282 @default.
- W2897099497 cites W2143981217 @default.
- W2897099497 cites W2160765180 @default.
- W2897099497 cites W2162139370 @default.
- W2897099497 cites W2230728100 @default.
- W2897099497 cites W2321427710 @default.
- W2897099497 cites W2400808756 @default.
- W2897099497 cites W2553449019 @default.
- W2897099497 cites W2560431302 @default.
- W2897099497 cites W2563056477 @default.
- W2897099497 cites W2574577230 @default.
- W2897099497 cites W2599688682 @default.
- W2897099497 cites W2727361566 @default.
- W2897099497 cites W2895323489 @default.
- W2897099497 cites W3088576923 @default.
- W2897099497 cites W3104543849 @default.
- W2897099497 cites W4235384963 @default.