Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897112547> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2897112547 endingPage "222" @default.
- W2897112547 startingPage "203" @default.
- W2897112547 abstract "The main aim of this paper is to describe the use of the Markovian-based Hidden Mixture Transition Distribution (HMTD) model for the clustering of longitudinal sequences of continuous data. We especially discuss the use of covariates to improve the clustering process. The HMTD is compared to the well-known Growth Mixture Model (GMM) that is considered here as a gold standard. Both models are applied to a sample of n = 185 adolescents, who are repeatedly evaluated for Internet overuse using the Internet Addiction Test (IAT). The best solution provided by the HMTD model has four groups and it uses five covariates. This solution is related to the subjects’ level of emotional well-being, body mass index, gender, and education track, but shows no relation with age. Compared to a GMM clustering, the HMTD solution provides highly interpretable results with quite equilibrate cluster size, while GMM tends to identify very small clusters allowing for less generalization." @default.
- W2897112547 created "2018-10-26" @default.
- W2897112547 creator A5029019642 @default.
- W2897112547 creator A5057599389 @default.
- W2897112547 date "2018-01-01" @default.
- W2897112547 modified "2023-09-26" @default.
- W2897112547 title "Markovian-Based Clustering of Internet Addiction Trajectories" @default.
- W2897112547 cites W1683157084 @default.
- W2897112547 cites W1967252734 @default.
- W2897112547 cites W1986522195 @default.
- W2897112547 cites W2033265410 @default.
- W2897112547 cites W2040258702 @default.
- W2897112547 cites W2055097229 @default.
- W2897112547 cites W2057964179 @default.
- W2897112547 cites W2059166063 @default.
- W2897112547 cites W2062838869 @default.
- W2897112547 cites W2072221629 @default.
- W2897112547 cites W2077801602 @default.
- W2897112547 cites W2089763487 @default.
- W2897112547 cites W2092111673 @default.
- W2897112547 cites W2118079952 @default.
- W2897112547 cites W2121236536 @default.
- W2897112547 cites W2121297553 @default.
- W2897112547 cites W2128815926 @default.
- W2897112547 cites W2142384583 @default.
- W2897112547 cites W2150500189 @default.
- W2897112547 cites W2337199347 @default.
- W2897112547 cites W2338587503 @default.
- W2897112547 cites W2592886524 @default.
- W2897112547 cites W2897813905 @default.
- W2897112547 cites W3098804274 @default.
- W2897112547 doi "https://doi.org/10.1007/978-3-319-95420-2_12" @default.
- W2897112547 hasPublicationYear "2018" @default.
- W2897112547 type Work @default.
- W2897112547 sameAs 2897112547 @default.
- W2897112547 citedByCount "2" @default.
- W2897112547 countsByYear W28971125472018 @default.
- W2897112547 countsByYear W28971125472023 @default.
- W2897112547 crossrefType "book-chapter" @default.
- W2897112547 hasAuthorship W2897112547A5029019642 @default.
- W2897112547 hasAuthorship W2897112547A5057599389 @default.
- W2897112547 hasBestOaLocation W28971125471 @default.
- W2897112547 hasConcept C110875604 @default.
- W2897112547 hasConcept C119043178 @default.
- W2897112547 hasConcept C134306372 @default.
- W2897112547 hasConcept C136764020 @default.
- W2897112547 hasConcept C149782125 @default.
- W2897112547 hasConcept C154945302 @default.
- W2897112547 hasConcept C164866538 @default.
- W2897112547 hasConcept C177148314 @default.
- W2897112547 hasConcept C199360897 @default.
- W2897112547 hasConcept C33923547 @default.
- W2897112547 hasConcept C41008148 @default.
- W2897112547 hasConcept C61224824 @default.
- W2897112547 hasConcept C73555534 @default.
- W2897112547 hasConceptScore W2897112547C110875604 @default.
- W2897112547 hasConceptScore W2897112547C119043178 @default.
- W2897112547 hasConceptScore W2897112547C134306372 @default.
- W2897112547 hasConceptScore W2897112547C136764020 @default.
- W2897112547 hasConceptScore W2897112547C149782125 @default.
- W2897112547 hasConceptScore W2897112547C154945302 @default.
- W2897112547 hasConceptScore W2897112547C164866538 @default.
- W2897112547 hasConceptScore W2897112547C177148314 @default.
- W2897112547 hasConceptScore W2897112547C199360897 @default.
- W2897112547 hasConceptScore W2897112547C33923547 @default.
- W2897112547 hasConceptScore W2897112547C41008148 @default.
- W2897112547 hasConceptScore W2897112547C61224824 @default.
- W2897112547 hasConceptScore W2897112547C73555534 @default.
- W2897112547 hasLocation W28971125471 @default.
- W2897112547 hasLocation W28971125472 @default.
- W2897112547 hasOpenAccess W2897112547 @default.
- W2897112547 hasPrimaryLocation W28971125471 @default.
- W2897112547 hasRelatedWork W1971753667 @default.
- W2897112547 hasRelatedWork W1997271576 @default.
- W2897112547 hasRelatedWork W2052275678 @default.
- W2897112547 hasRelatedWork W2068208308 @default.
- W2897112547 hasRelatedWork W2082669437 @default.
- W2897112547 hasRelatedWork W2348187822 @default.
- W2897112547 hasRelatedWork W2531056186 @default.
- W2897112547 hasRelatedWork W2885094885 @default.
- W2897112547 hasRelatedWork W4380987856 @default.
- W2897112547 hasRelatedWork W2946992918 @default.
- W2897112547 isParatext "false" @default.
- W2897112547 isRetracted "false" @default.
- W2897112547 magId "2897112547" @default.
- W2897112547 workType "book-chapter" @default.