Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897112611> ?p ?o ?g. }
- W2897112611 abstract "Magnetic resonance imaging (MRI) is extensively used for diagnosis and image-guided therapeutics. Due to hardware, physical and physiological limitations, acquisition of high-resolution MRI data takes long scan time at high system cost, and could be limited to low spatial coverage and also subject to motion artifacts. Super-resolution MRI can be achieved with deep learning, which is a promising approach and has a great potential for preclinical and clinical imaging. Compared with polynomial interpolation or sparse-coding algorithms, deep learning extracts prior knowledge from big data and produces superior MRI images from a low-resolution counterpart. In this paper, we adapt two state-of-the-art neural network models for CT denoising and deblurring, transfer them for super-resolution MRI, and demonstrate encouraging super-resolution MRI results toward two-fold resolution enhancement." @default.
- W2897112611 created "2018-10-26" @default.
- W2897112611 creator A5049086157 @default.
- W2897112611 creator A5051700680 @default.
- W2897112611 creator A5057851690 @default.
- W2897112611 creator A5076320750 @default.
- W2897112611 date "2018-10-16" @default.
- W2897112611 modified "2023-09-27" @default.
- W2897112611 title "Super-resolution MRI through Deep Learning" @default.
- W2897112611 cites W1566494032 @default.
- W2897112611 cites W1686810756 @default.
- W2897112611 cites W1963919719 @default.
- W2897112611 cites W2016598597 @default.
- W2897112611 cites W2018747920 @default.
- W2897112611 cites W2057328741 @default.
- W2897112611 cites W2085645375 @default.
- W2897112611 cites W2087380704 @default.
- W2897112611 cites W2103559027 @default.
- W2897112611 cites W2124015132 @default.
- W2897112611 cites W2125704842 @default.
- W2897112611 cites W2135264048 @default.
- W2897112611 cites W2142154521 @default.
- W2897112611 cites W2170057902 @default.
- W2897112611 cites W2187351272 @default.
- W2897112611 cites W2548974849 @default.
- W2897112611 cites W2584483805 @default.
- W2897112611 cites W2631883531 @default.
- W2897112611 cites W2743780012 @default.
- W2897112611 cites W2794977498 @default.
- W2897112611 cites W2798401174 @default.
- W2897112611 cites W2805666847 @default.
- W2897112611 cites W2962879692 @default.
- W2897112611 cites W2964297772 @default.
- W2897112611 cites W3098848838 @default.
- W2897112611 cites W3103261259 @default.
- W2897112611 cites W2142342269 @default.
- W2897112611 hasPublicationYear "2018" @default.
- W2897112611 type Work @default.
- W2897112611 sameAs 2897112611 @default.
- W2897112611 citedByCount "4" @default.
- W2897112611 countsByYear W28971126112018 @default.
- W2897112611 countsByYear W28971126112021 @default.
- W2897112611 crossrefType "posted-content" @default.
- W2897112611 hasAuthorship W2897112611A5049086157 @default.
- W2897112611 hasAuthorship W2897112611A5051700680 @default.
- W2897112611 hasAuthorship W2897112611A5057851690 @default.
- W2897112611 hasAuthorship W2897112611A5076320750 @default.
- W2897112611 hasConcept C106430172 @default.
- W2897112611 hasConcept C108583219 @default.
- W2897112611 hasConcept C115961682 @default.
- W2897112611 hasConcept C126838900 @default.
- W2897112611 hasConcept C127313418 @default.
- W2897112611 hasConcept C137800194 @default.
- W2897112611 hasConcept C141239990 @default.
- W2897112611 hasConcept C143409427 @default.
- W2897112611 hasConcept C154945302 @default.
- W2897112611 hasConcept C157787499 @default.
- W2897112611 hasConcept C205372480 @default.
- W2897112611 hasConcept C2777693668 @default.
- W2897112611 hasConcept C3020199158 @default.
- W2897112611 hasConcept C31972630 @default.
- W2897112611 hasConcept C41008148 @default.
- W2897112611 hasConcept C62649853 @default.
- W2897112611 hasConcept C71924100 @default.
- W2897112611 hasConcept C77637269 @default.
- W2897112611 hasConcept C9417928 @default.
- W2897112611 hasConceptScore W2897112611C106430172 @default.
- W2897112611 hasConceptScore W2897112611C108583219 @default.
- W2897112611 hasConceptScore W2897112611C115961682 @default.
- W2897112611 hasConceptScore W2897112611C126838900 @default.
- W2897112611 hasConceptScore W2897112611C127313418 @default.
- W2897112611 hasConceptScore W2897112611C137800194 @default.
- W2897112611 hasConceptScore W2897112611C141239990 @default.
- W2897112611 hasConceptScore W2897112611C143409427 @default.
- W2897112611 hasConceptScore W2897112611C154945302 @default.
- W2897112611 hasConceptScore W2897112611C157787499 @default.
- W2897112611 hasConceptScore W2897112611C205372480 @default.
- W2897112611 hasConceptScore W2897112611C2777693668 @default.
- W2897112611 hasConceptScore W2897112611C3020199158 @default.
- W2897112611 hasConceptScore W2897112611C31972630 @default.
- W2897112611 hasConceptScore W2897112611C41008148 @default.
- W2897112611 hasConceptScore W2897112611C62649853 @default.
- W2897112611 hasConceptScore W2897112611C71924100 @default.
- W2897112611 hasConceptScore W2897112611C77637269 @default.
- W2897112611 hasConceptScore W2897112611C9417928 @default.
- W2897112611 hasLocation W28971126111 @default.
- W2897112611 hasOpenAccess W2897112611 @default.
- W2897112611 hasPrimaryLocation W28971126111 @default.
- W2897112611 hasRelatedWork W1970848816 @default.
- W2897112611 hasRelatedWork W1990346367 @default.
- W2897112611 hasRelatedWork W2080230805 @default.
- W2897112611 hasRelatedWork W2521252209 @default.
- W2897112611 hasRelatedWork W2773725561 @default.
- W2897112611 hasRelatedWork W2891969634 @default.
- W2897112611 hasRelatedWork W2906473494 @default.
- W2897112611 hasRelatedWork W2978392370 @default.
- W2897112611 hasRelatedWork W2979297261 @default.
- W2897112611 hasRelatedWork W3083118880 @default.
- W2897112611 hasRelatedWork W3098848838 @default.
- W2897112611 hasRelatedWork W3101621846 @default.