Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897118527> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2897118527 abstract "Although there has been a lot of research in multi-label learning task, little attention has been paid on the weak label problem, in which only a subset of labels has been assigned to each instance in the training set. The extreme form of weak label learning is to predict all the labels from just one label set in the training phase. In this paper, we focus on dealing with this kind of weak label learning task, which is commonly met in old legacy information system, and it is also called “Hercules Learning.” We propose a label-group-optimization-based Hercules learning algorithm, which divides the entire label set into multiple groups according to the classifier’s capability to distinguish them, so for each group, we can train a classifier which can predict instance’s label within the group with high accuracy. The experimental results show that our algorithm is obviously superior to the existing weak label learning algorithm." @default.
- W2897118527 created "2018-10-26" @default.
- W2897118527 creator A5025725446 @default.
- W2897118527 creator A5028934906 @default.
- W2897118527 creator A5032733333 @default.
- W2897118527 creator A5078351384 @default.
- W2897118527 creator A5080852978 @default.
- W2897118527 creator A5082020327 @default.
- W2897118527 date "2018-01-01" @default.
- W2897118527 modified "2023-09-25" @default.
- W2897118527 title "Expede Herculem: Learning Multi Labels From Single Label" @default.
- W2897118527 cites W135042460 @default.
- W2897118527 cites W1987063155 @default.
- W2897118527 cites W2019899889 @default.
- W2897118527 cites W2025335430 @default.
- W2897118527 cites W2025614361 @default.
- W2897118527 cites W21006490 @default.
- W2897118527 cites W2114315281 @default.
- W2897118527 cites W2115627867 @default.
- W2897118527 cites W2118712128 @default.
- W2897118527 cites W2137107481 @default.
- W2897118527 cites W2140335411 @default.
- W2897118527 cites W2146241755 @default.
- W2897118527 cites W2153635508 @default.
- W2897118527 cites W2153677638 @default.
- W2897118527 cites W2291974250 @default.
- W2897118527 cites W2564759307 @default.
- W2897118527 cites W2584559581 @default.
- W2897118527 cites W84330812 @default.
- W2897118527 doi "https://doi.org/10.1109/access.2018.2876014" @default.
- W2897118527 hasPublicationYear "2018" @default.
- W2897118527 type Work @default.
- W2897118527 sameAs 2897118527 @default.
- W2897118527 citedByCount "1" @default.
- W2897118527 countsByYear W28971185272020 @default.
- W2897118527 crossrefType "journal-article" @default.
- W2897118527 hasAuthorship W2897118527A5025725446 @default.
- W2897118527 hasAuthorship W2897118527A5028934906 @default.
- W2897118527 hasAuthorship W2897118527A5032733333 @default.
- W2897118527 hasAuthorship W2897118527A5078351384 @default.
- W2897118527 hasAuthorship W2897118527A5080852978 @default.
- W2897118527 hasAuthorship W2897118527A5082020327 @default.
- W2897118527 hasBestOaLocation W28971185271 @default.
- W2897118527 hasConcept C119857082 @default.
- W2897118527 hasConcept C153180895 @default.
- W2897118527 hasConcept C154945302 @default.
- W2897118527 hasConcept C162324750 @default.
- W2897118527 hasConcept C187736073 @default.
- W2897118527 hasConcept C24138899 @default.
- W2897118527 hasConcept C2776482837 @default.
- W2897118527 hasConcept C2780451532 @default.
- W2897118527 hasConcept C28006648 @default.
- W2897118527 hasConcept C41008148 @default.
- W2897118527 hasConcept C51632099 @default.
- W2897118527 hasConcept C58973888 @default.
- W2897118527 hasConcept C95623464 @default.
- W2897118527 hasConceptScore W2897118527C119857082 @default.
- W2897118527 hasConceptScore W2897118527C153180895 @default.
- W2897118527 hasConceptScore W2897118527C154945302 @default.
- W2897118527 hasConceptScore W2897118527C162324750 @default.
- W2897118527 hasConceptScore W2897118527C187736073 @default.
- W2897118527 hasConceptScore W2897118527C24138899 @default.
- W2897118527 hasConceptScore W2897118527C2776482837 @default.
- W2897118527 hasConceptScore W2897118527C2780451532 @default.
- W2897118527 hasConceptScore W2897118527C28006648 @default.
- W2897118527 hasConceptScore W2897118527C41008148 @default.
- W2897118527 hasConceptScore W2897118527C51632099 @default.
- W2897118527 hasConceptScore W2897118527C58973888 @default.
- W2897118527 hasConceptScore W2897118527C95623464 @default.
- W2897118527 hasFunder F4320321001 @default.
- W2897118527 hasLocation W28971185271 @default.
- W2897118527 hasOpenAccess W2897118527 @default.
- W2897118527 hasPrimaryLocation W28971185271 @default.
- W2897118527 hasRelatedWork W167321734 @default.
- W2897118527 hasRelatedWork W2296059120 @default.
- W2897118527 hasRelatedWork W254202083 @default.
- W2897118527 hasRelatedWork W2667174781 @default.
- W2897118527 hasRelatedWork W2740227850 @default.
- W2897118527 hasRelatedWork W2743493499 @default.
- W2897118527 hasRelatedWork W2788927584 @default.
- W2897118527 hasRelatedWork W2789037498 @default.
- W2897118527 hasRelatedWork W2868874316 @default.
- W2897118527 hasRelatedWork W2884403084 @default.
- W2897118527 hasRelatedWork W2897125789 @default.
- W2897118527 hasRelatedWork W2903612254 @default.
- W2897118527 hasRelatedWork W2906777920 @default.
- W2897118527 hasRelatedWork W2924575331 @default.
- W2897118527 hasRelatedWork W3004854375 @default.
- W2897118527 hasRelatedWork W3097634570 @default.
- W2897118527 hasRelatedWork W3126646455 @default.
- W2897118527 hasRelatedWork W3165979920 @default.
- W2897118527 hasRelatedWork W3174569599 @default.
- W2897118527 hasRelatedWork W3196687023 @default.
- W2897118527 isParatext "false" @default.
- W2897118527 isRetracted "false" @default.
- W2897118527 magId "2897118527" @default.
- W2897118527 workType "article" @default.