Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897119145> ?p ?o ?g. }
- W2897119145 endingPage "101581" @default.
- W2897119145 startingPage "101581" @default.
- W2897119145 abstract "Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A number of these methods were employed to re-segment the T1 images for the stroke group after the stroke lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e. segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W), slope ‘a’ of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of control−stroke difference. We eliminated the redundant measures after analysing between-measure correlations using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%, followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p = 0.014), FreeSurfer v5.3 (p = 0.007), manual tracing (p = 0.049), and CAT using the Neuromorphometics atlas (p = 0.017) all showed a significantly reduced hippocampal volume mean for the stroke group compared to control at three months. Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed less with manual tracing. These findings recommend an automated segmentation without lesion masking as a more reliable procedure for the estimation of hippocampal volume in ischemic stroke." @default.
- W2897119145 created "2018-10-26" @default.
- W2897119145 creator A5001221823 @default.
- W2897119145 creator A5001478285 @default.
- W2897119145 creator A5008154836 @default.
- W2897119145 creator A5020746135 @default.
- W2897119145 creator A5041029206 @default.
- W2897119145 creator A5048062218 @default.
- W2897119145 creator A5052747133 @default.
- W2897119145 creator A5070802937 @default.
- W2897119145 creator A5071825455 @default.
- W2897119145 creator A5073183618 @default.
- W2897119145 date "2019-01-01" @default.
- W2897119145 modified "2023-09-26" @default.
- W2897119145 title "A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants" @default.
- W2897119145 cites W1489942343 @default.
- W2897119145 cites W1656023708 @default.
- W2897119145 cites W1981116212 @default.
- W2897119145 cites W1981789870 @default.
- W2897119145 cites W1991766274 @default.
- W2897119145 cites W2004293194 @default.
- W2897119145 cites W2004582236 @default.
- W2897119145 cites W2010669774 @default.
- W2897119145 cites W2018662705 @default.
- W2897119145 cites W2021327692 @default.
- W2897119145 cites W2026616100 @default.
- W2897119145 cites W2032377318 @default.
- W2897119145 cites W2042070546 @default.
- W2897119145 cites W2043073239 @default.
- W2897119145 cites W2049546272 @default.
- W2897119145 cites W2052093136 @default.
- W2897119145 cites W2053453668 @default.
- W2897119145 cites W2068633603 @default.
- W2897119145 cites W2083099567 @default.
- W2897119145 cites W2084443965 @default.
- W2897119145 cites W2089940272 @default.
- W2897119145 cites W2090766610 @default.
- W2897119145 cites W2092185868 @default.
- W2897119145 cites W2096029390 @default.
- W2897119145 cites W2097775060 @default.
- W2897119145 cites W2103481737 @default.
- W2897119145 cites W2105086806 @default.
- W2897119145 cites W2121369614 @default.
- W2897119145 cites W2125512901 @default.
- W2897119145 cites W2126277436 @default.
- W2897119145 cites W2127324977 @default.
- W2897119145 cites W2128440798 @default.
- W2897119145 cites W2129574992 @default.
- W2897119145 cites W2134590632 @default.
- W2897119145 cites W2135070546 @default.
- W2897119145 cites W2139886607 @default.
- W2897119145 cites W2141403362 @default.
- W2897119145 cites W2147883225 @default.
- W2897119145 cites W2148157540 @default.
- W2897119145 cites W2148726987 @default.
- W2897119145 cites W2151130155 @default.
- W2897119145 cites W2151721316 @default.
- W2897119145 cites W2153480371 @default.
- W2897119145 cites W2155963684 @default.
- W2897119145 cites W2156308126 @default.
- W2897119145 cites W2157270343 @default.
- W2897119145 cites W2157848968 @default.
- W2897119145 cites W2159759971 @default.
- W2897119145 cites W2159965356 @default.
- W2897119145 cites W2217077692 @default.
- W2897119145 cites W2218023409 @default.
- W2897119145 cites W2313339984 @default.
- W2897119145 cites W2346768366 @default.
- W2897119145 cites W2504084072 @default.
- W2897119145 cites W2562490796 @default.
- W2897119145 cites W2589102342 @default.
- W2897119145 cites W2591674413 @default.
- W2897119145 cites W2612981588 @default.
- W2897119145 cites W2623873915 @default.
- W2897119145 cites W4230920194 @default.
- W2897119145 cites W4234362978 @default.
- W2897119145 cites W4235770099 @default.
- W2897119145 cites W4255375128 @default.
- W2897119145 cites W621251951 @default.
- W2897119145 doi "https://doi.org/10.1016/j.nicl.2018.10.019" @default.
- W2897119145 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6411582" @default.
- W2897119145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30606656" @default.
- W2897119145 hasPublicationYear "2019" @default.
- W2897119145 type Work @default.
- W2897119145 sameAs 2897119145 @default.
- W2897119145 citedByCount "25" @default.
- W2897119145 countsByYear W28971191452019 @default.
- W2897119145 countsByYear W28971191452020 @default.
- W2897119145 countsByYear W28971191452021 @default.
- W2897119145 countsByYear W28971191452022 @default.
- W2897119145 countsByYear W28971191452023 @default.
- W2897119145 crossrefType "journal-article" @default.
- W2897119145 hasAuthorship W2897119145A5001221823 @default.
- W2897119145 hasAuthorship W2897119145A5001478285 @default.
- W2897119145 hasAuthorship W2897119145A5008154836 @default.
- W2897119145 hasAuthorship W2897119145A5020746135 @default.
- W2897119145 hasAuthorship W2897119145A5041029206 @default.
- W2897119145 hasAuthorship W2897119145A5048062218 @default.