Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897135094> ?p ?o ?g. }
- W2897135094 endingPage "1288" @default.
- W2897135094 startingPage "1276" @default.
- W2897135094 abstract "In order to exploit the abundant potential information of the unlabeled data and contribute to analyzing the correlation among heterogeneous data, we propose the semi-supervised model named adaptive semi-supervised feature selection for cross-modal retrieval. First, we utilize the semantic regression to strengthen the neighboring relationship between the data with the same semantic. And the correlation between heterogeneous data can be optimized via keeping the pairwise closeness when learning the common latent space. Second, we adopt the graph-based constraint to predict accurate labels for unlabeled data, and it can also keep the geometric structure consistency between the label space and the feature space of heterogeneous data in the common latent space. Finally, an efficient joint optimization algorithm is proposed to update the mapping matrices and the label matrix for unlabeled data simultaneously and iteratively. It makes samples from different classes to be far apart, while the samples from same class lie as close as possible. Meanwhile, the ${l_{2,1}}$ -norm constraint is used for feature selection and outlier reduction when the mapping matrices are learned. In addition, we propose learning different mapping matrices corresponding to different sub-tasks to emphasize the semantic and structural information of query data. Experiment results on three datasets demonstrate that our method performs better than the state-of-the-art methods." @default.
- W2897135094 created "2018-10-26" @default.
- W2897135094 creator A5034967388 @default.
- W2897135094 creator A5062546146 @default.
- W2897135094 creator A5072520382 @default.
- W2897135094 creator A5080244427 @default.
- W2897135094 creator A5080433957 @default.
- W2897135094 creator A5086851360 @default.
- W2897135094 date "2019-05-01" @default.
- W2897135094 modified "2023-10-17" @default.
- W2897135094 title "Adaptive Semi-Supervised Feature Selection for Cross-Modal Retrieval" @default.
- W2897135094 cites W1123427201 @default.
- W2897135094 cites W1573040851 @default.
- W2897135094 cites W1922199343 @default.
- W2897135094 cites W1963887029 @default.
- W2897135094 cites W1970855969 @default.
- W2897135094 cites W1974647172 @default.
- W2897135094 cites W1996219872 @default.
- W2897135094 cites W2013535308 @default.
- W2897135094 cites W2022398331 @default.
- W2897135094 cites W2030899956 @default.
- W2897135094 cites W2052727801 @default.
- W2897135094 cites W2070753207 @default.
- W2897135094 cites W2071207147 @default.
- W2897135094 cites W2074668987 @default.
- W2897135094 cites W2081327381 @default.
- W2897135094 cites W2081944951 @default.
- W2897135094 cites W2089549033 @default.
- W2897135094 cites W2100235303 @default.
- W2897135094 cites W2106277773 @default.
- W2897135094 cites W2164530430 @default.
- W2897135094 cites W2170653751 @default.
- W2897135094 cites W2211092169 @default.
- W2897135094 cites W2246035736 @default.
- W2897135094 cites W2414522539 @default.
- W2897135094 cites W2418353079 @default.
- W2897135094 cites W2520861906 @default.
- W2897135094 cites W2524579183 @default.
- W2897135094 cites W2527187232 @default.
- W2897135094 cites W2590822257 @default.
- W2897135094 cites W2725249286 @default.
- W2897135094 cites W2739759426 @default.
- W2897135094 cites W2740755807 @default.
- W2897135094 cites W2741163476 @default.
- W2897135094 cites W2752589725 @default.
- W2897135094 cites W2767087869 @default.
- W2897135094 cites W4251308012 @default.
- W2897135094 doi "https://doi.org/10.1109/tmm.2018.2877127" @default.
- W2897135094 hasPublicationYear "2019" @default.
- W2897135094 type Work @default.
- W2897135094 sameAs 2897135094 @default.
- W2897135094 citedByCount "91" @default.
- W2897135094 countsByYear W28971350942018 @default.
- W2897135094 countsByYear W28971350942019 @default.
- W2897135094 countsByYear W28971350942020 @default.
- W2897135094 countsByYear W28971350942021 @default.
- W2897135094 countsByYear W28971350942022 @default.
- W2897135094 countsByYear W28971350942023 @default.
- W2897135094 crossrefType "journal-article" @default.
- W2897135094 hasAuthorship W2897135094A5034967388 @default.
- W2897135094 hasAuthorship W2897135094A5062546146 @default.
- W2897135094 hasAuthorship W2897135094A5072520382 @default.
- W2897135094 hasAuthorship W2897135094A5080244427 @default.
- W2897135094 hasAuthorship W2897135094A5080433957 @default.
- W2897135094 hasAuthorship W2897135094A5086851360 @default.
- W2897135094 hasConcept C119857082 @default.
- W2897135094 hasConcept C138885662 @default.
- W2897135094 hasConcept C148483581 @default.
- W2897135094 hasConcept C153180895 @default.
- W2897135094 hasConcept C154945302 @default.
- W2897135094 hasConcept C185592680 @default.
- W2897135094 hasConcept C188027245 @default.
- W2897135094 hasConcept C2776401178 @default.
- W2897135094 hasConcept C41008148 @default.
- W2897135094 hasConcept C41895202 @default.
- W2897135094 hasConcept C52622490 @default.
- W2897135094 hasConcept C71139939 @default.
- W2897135094 hasConcept C81917197 @default.
- W2897135094 hasConceptScore W2897135094C119857082 @default.
- W2897135094 hasConceptScore W2897135094C138885662 @default.
- W2897135094 hasConceptScore W2897135094C148483581 @default.
- W2897135094 hasConceptScore W2897135094C153180895 @default.
- W2897135094 hasConceptScore W2897135094C154945302 @default.
- W2897135094 hasConceptScore W2897135094C185592680 @default.
- W2897135094 hasConceptScore W2897135094C188027245 @default.
- W2897135094 hasConceptScore W2897135094C2776401178 @default.
- W2897135094 hasConceptScore W2897135094C41008148 @default.
- W2897135094 hasConceptScore W2897135094C41895202 @default.
- W2897135094 hasConceptScore W2897135094C52622490 @default.
- W2897135094 hasConceptScore W2897135094C71139939 @default.
- W2897135094 hasConceptScore W2897135094C81917197 @default.
- W2897135094 hasFunder F4320321001 @default.
- W2897135094 hasIssue "5" @default.
- W2897135094 hasLocation W28971350941 @default.
- W2897135094 hasOpenAccess W2897135094 @default.
- W2897135094 hasPrimaryLocation W28971350941 @default.
- W2897135094 hasRelatedWork W2016461833 @default.
- W2897135094 hasRelatedWork W2022684485 @default.