Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897151373> ?p ?o ?g. }
- W2897151373 endingPage "4217" @default.
- W2897151373 startingPage "4206" @default.
- W2897151373 abstract "Scattering characteristics of targets are of great importance for synthetic aperture radar (SAR) image analysis. In this paper, a novel template matching based aircraft recognition method with scattering structure feature (SSF) is proposed to improve recognition accuracy and efficiency in SAR images, mainly including the feature model construction stage and the recognition stage. In the former stage, the SSF, being composed of strong scattering point and its corresponding scattering intensity distribution, is extracted by a scattering structure feature model newly defined with Gaussian mixture model. In the recognition stage, template matching is implemented via the proposed sample-decision optimization algorithm. Specifically, in the sample step, a geometric prior based Monte Carlo method with Hausdorff distance is introduced to improve the efficiency of candidate template selection. In the decision step, coordinate translation Kullback-Leibler divergence is proposed by defining a new entropy function of translation coordinates to achieve the goal of translation invariance. Experimental results are given to demonstrate the accuracy and efficiency of the proposed method." @default.
- W2897151373 created "2018-10-26" @default.
- W2897151373 creator A5002059265 @default.
- W2897151373 creator A5002110023 @default.
- W2897151373 creator A5005905514 @default.
- W2897151373 creator A5015155189 @default.
- W2897151373 creator A5032174741 @default.
- W2897151373 creator A5057853630 @default.
- W2897151373 date "2018-11-01" @default.
- W2897151373 modified "2023-10-10" @default.
- W2897151373 title "Aircraft Recognition in SAR Images Based on Scattering Structure Feature and Template Matching" @default.
- W2897151373 cites W1623363662 @default.
- W2897151373 cites W1920235975 @default.
- W2897151373 cites W1973066300 @default.
- W2897151373 cites W1983629651 @default.
- W2897151373 cites W2020955519 @default.
- W2897151373 cites W2035054708 @default.
- W2897151373 cites W2035596087 @default.
- W2897151373 cites W2038591350 @default.
- W2897151373 cites W2042509127 @default.
- W2897151373 cites W2049633694 @default.
- W2897151373 cites W2053913485 @default.
- W2897151373 cites W2069469628 @default.
- W2897151373 cites W2069819610 @default.
- W2897151373 cites W2072887087 @default.
- W2897151373 cites W2074538295 @default.
- W2897151373 cites W2079299474 @default.
- W2897151373 cites W2090563002 @default.
- W2897151373 cites W2113214059 @default.
- W2897151373 cites W2117581466 @default.
- W2897151373 cites W2124014399 @default.
- W2897151373 cites W2131779510 @default.
- W2897151373 cites W2141472614 @default.
- W2897151373 cites W2144851790 @default.
- W2897151373 cites W2152433379 @default.
- W2897151373 cites W2156978438 @default.
- W2897151373 cites W2158118830 @default.
- W2897151373 cites W2161969291 @default.
- W2897151373 cites W2165232124 @default.
- W2897151373 cites W2166992393 @default.
- W2897151373 cites W2248623186 @default.
- W2897151373 cites W2291529341 @default.
- W2897151373 cites W2292481059 @default.
- W2897151373 cites W2319404697 @default.
- W2897151373 cites W2340292449 @default.
- W2897151373 cites W2410591237 @default.
- W2897151373 cites W2521772843 @default.
- W2897151373 cites W2546715339 @default.
- W2897151373 cites W2548711151 @default.
- W2897151373 cites W2597000936 @default.
- W2897151373 cites W2617083732 @default.
- W2897151373 cites W2626948536 @default.
- W2897151373 cites W2736522616 @default.
- W2897151373 cites W2741749842 @default.
- W2897151373 cites W2792619950 @default.
- W2897151373 cites W2823283639 @default.
- W2897151373 cites W4249513058 @default.
- W2897151373 doi "https://doi.org/10.1109/jstars.2018.2872018" @default.
- W2897151373 hasPublicationYear "2018" @default.
- W2897151373 type Work @default.
- W2897151373 sameAs 2897151373 @default.
- W2897151373 citedByCount "16" @default.
- W2897151373 countsByYear W28971513732019 @default.
- W2897151373 countsByYear W28971513732021 @default.
- W2897151373 countsByYear W28971513732022 @default.
- W2897151373 countsByYear W28971513732023 @default.
- W2897151373 crossrefType "journal-article" @default.
- W2897151373 hasAuthorship W2897151373A5002059265 @default.
- W2897151373 hasAuthorship W2897151373A5002110023 @default.
- W2897151373 hasAuthorship W2897151373A5005905514 @default.
- W2897151373 hasAuthorship W2897151373A5015155189 @default.
- W2897151373 hasAuthorship W2897151373A5032174741 @default.
- W2897151373 hasAuthorship W2897151373A5057853630 @default.
- W2897151373 hasConcept C106301342 @default.
- W2897151373 hasConcept C115961682 @default.
- W2897151373 hasConcept C120665830 @default.
- W2897151373 hasConcept C121332964 @default.
- W2897151373 hasConcept C138885662 @default.
- W2897151373 hasConcept C153180895 @default.
- W2897151373 hasConcept C154945302 @default.
- W2897151373 hasConcept C158096908 @default.
- W2897151373 hasConcept C163716315 @default.
- W2897151373 hasConcept C166704113 @default.
- W2897151373 hasConcept C191486275 @default.
- W2897151373 hasConcept C2776401178 @default.
- W2897151373 hasConcept C31972630 @default.
- W2897151373 hasConcept C41008148 @default.
- W2897151373 hasConcept C41895202 @default.
- W2897151373 hasConcept C52622490 @default.
- W2897151373 hasConcept C62520636 @default.
- W2897151373 hasConcept C87360688 @default.
- W2897151373 hasConceptScore W2897151373C106301342 @default.
- W2897151373 hasConceptScore W2897151373C115961682 @default.
- W2897151373 hasConceptScore W2897151373C120665830 @default.
- W2897151373 hasConceptScore W2897151373C121332964 @default.
- W2897151373 hasConceptScore W2897151373C138885662 @default.
- W2897151373 hasConceptScore W2897151373C153180895 @default.
- W2897151373 hasConceptScore W2897151373C154945302 @default.