Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897176812> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2897176812 endingPage "380" @default.
- W2897176812 startingPage "367" @default.
- W2897176812 abstract "In recent years, the idea of viewing online social media as human-powered sensing networks has draw significant attentions in research communities. Great examples are Twitter-based earthquake detection, Influenza detection, and traffic abnormally detection. Following the same viewpoint of the human-powered sensing network, in this paper, we discover the utility of user-generated social texts on social media platform for extracting highlights and annotating the semantics of sport video clips. The basic idea for the leverage of social text is that one can make use of the semantics of the social texts for understanding the corresponding moments of the game. For example, when watching a baseball, the users on social media will timely comments about the play, the team, and the events. By properly analyzing the texts, automatically annotating the sport videos turns out to be possible. However, two research challenges need to be addressed for such an idea: (1) as sport videos are often lengthy, how to precisely locate the moment of important events is a challenge task, (2) social media contents are generated by users on social network platform and contains various information and with noises, and therefore how to distill useful information from noisy social comment is also a challenge. In this paper, we present a weighting scheme to address the issues by estimating the importance of users (and therefore their comments) on social network platforms based on mining the interaction between users on social platforms. Also, we use soccer game videos and baseball game videos as well as social comment from on-line social network as our test data set. The evaluation over real data shows the effectiveness of the proposed framework." @default.
- W2897176812 created "2018-10-26" @default.
- W2897176812 creator A5021340093 @default.
- W2897176812 creator A5024883783 @default.
- W2897176812 creator A5043800805 @default.
- W2897176812 date "2018-10-19" @default.
- W2897176812 modified "2023-09-27" @default.
- W2897176812 title "On Semantic Annotation for Sports Video Highlights by Mining User Comments from Live Broadcast Social Network" @default.
- W2897176812 cites W1978793899 @default.
- W2897176812 cites W1998250440 @default.
- W2897176812 cites W1999110238 @default.
- W2897176812 cites W2017258348 @default.
- W2897176812 cites W2020042635 @default.
- W2897176812 cites W2029545460 @default.
- W2897176812 cites W2069667724 @default.
- W2897176812 cites W2071998402 @default.
- W2897176812 cites W2109463015 @default.
- W2897176812 cites W2124499489 @default.
- W2897176812 cites W2138025284 @default.
- W2897176812 cites W2141858776 @default.
- W2897176812 cites W2143800062 @default.
- W2897176812 cites W2147194983 @default.
- W2897176812 cites W2149335206 @default.
- W2897176812 doi "https://doi.org/10.1007/978-3-030-02613-4_33" @default.
- W2897176812 hasPublicationYear "2018" @default.
- W2897176812 type Work @default.
- W2897176812 sameAs 2897176812 @default.
- W2897176812 citedByCount "0" @default.
- W2897176812 crossrefType "book-chapter" @default.
- W2897176812 hasAuthorship W2897176812A5021340093 @default.
- W2897176812 hasAuthorship W2897176812A5024883783 @default.
- W2897176812 hasAuthorship W2897176812A5043800805 @default.
- W2897176812 hasConcept C127413603 @default.
- W2897176812 hasConcept C136764020 @default.
- W2897176812 hasConcept C153083717 @default.
- W2897176812 hasConcept C154945302 @default.
- W2897176812 hasConcept C184337299 @default.
- W2897176812 hasConcept C199360897 @default.
- W2897176812 hasConcept C201995342 @default.
- W2897176812 hasConcept C23123220 @default.
- W2897176812 hasConcept C2522767166 @default.
- W2897176812 hasConcept C2780451532 @default.
- W2897176812 hasConcept C41008148 @default.
- W2897176812 hasConcept C4727928 @default.
- W2897176812 hasConcept C49774154 @default.
- W2897176812 hasConcept C518677369 @default.
- W2897176812 hasConceptScore W2897176812C127413603 @default.
- W2897176812 hasConceptScore W2897176812C136764020 @default.
- W2897176812 hasConceptScore W2897176812C153083717 @default.
- W2897176812 hasConceptScore W2897176812C154945302 @default.
- W2897176812 hasConceptScore W2897176812C184337299 @default.
- W2897176812 hasConceptScore W2897176812C199360897 @default.
- W2897176812 hasConceptScore W2897176812C201995342 @default.
- W2897176812 hasConceptScore W2897176812C23123220 @default.
- W2897176812 hasConceptScore W2897176812C2522767166 @default.
- W2897176812 hasConceptScore W2897176812C2780451532 @default.
- W2897176812 hasConceptScore W2897176812C41008148 @default.
- W2897176812 hasConceptScore W2897176812C4727928 @default.
- W2897176812 hasConceptScore W2897176812C49774154 @default.
- W2897176812 hasConceptScore W2897176812C518677369 @default.
- W2897176812 hasLocation W28971768121 @default.
- W2897176812 hasOpenAccess W2897176812 @default.
- W2897176812 hasPrimaryLocation W28971768121 @default.
- W2897176812 hasRelatedWork W2030250808 @default.
- W2897176812 hasRelatedWork W2065099951 @default.
- W2897176812 hasRelatedWork W2355862304 @default.
- W2897176812 hasRelatedWork W2356108042 @default.
- W2897176812 hasRelatedWork W2357241418 @default.
- W2897176812 hasRelatedWork W2376796979 @default.
- W2897176812 hasRelatedWork W2379418341 @default.
- W2897176812 hasRelatedWork W2748952813 @default.
- W2897176812 hasRelatedWork W2983880603 @default.
- W2897176812 hasRelatedWork W2993423439 @default.
- W2897176812 isParatext "false" @default.
- W2897176812 isRetracted "false" @default.
- W2897176812 magId "2897176812" @default.
- W2897176812 workType "book-chapter" @default.