Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897194080> ?p ?o ?g. }
- W2897194080 endingPage "1584" @default.
- W2897194080 startingPage "1573" @default.
- W2897194080 abstract "Mislabeled training samples may have a negative effect on the performance of hyperspectral image classification. In order to solve this problem, a new density peak (DP) clustering-based noisy label detection method is proposed, which consists of the following steps. First, the distances among the training samples of each class are calculated using four representative distance metrics, i.e., the Euclidean distance (ED), orthogonal projection divergence (OPD), spectral information divergence (SID), and correlation coefficient (CC). Then, the local density of each training sample can be obtained using the DP clustering algorithm. Finally, a local density-based decision function is used to detect the noisy labels. The effectiveness of the proposed method is evaluated using the support vector machines on several real hyperspectral data sets. Experimental results demonstrate that the proposed noisy label detection method indeed helps in improving the classification performance." @default.
- W2897194080 created "2018-10-26" @default.
- W2897194080 creator A5037075182 @default.
- W2897194080 creator A5042231008 @default.
- W2897194080 creator A5057514965 @default.
- W2897194080 creator A5067097659 @default.
- W2897194080 creator A5080609124 @default.
- W2897194080 date "2019-03-01" @default.
- W2897194080 modified "2023-10-04" @default.
- W2897194080 title "Density Peak-Based Noisy Label Detection for Hyperspectral Image Classification" @default.
- W2897194080 cites W1932531222 @default.
- W2897194080 cites W1939429412 @default.
- W2897194080 cites W1967275758 @default.
- W2897194080 cites W1971891445 @default.
- W2897194080 cites W1997565609 @default.
- W2897194080 cites W2018482939 @default.
- W2897194080 cites W2020586934 @default.
- W2897194080 cites W2038386419 @default.
- W2897194080 cites W2072631813 @default.
- W2897194080 cites W2079055733 @default.
- W2897194080 cites W2092869901 @default.
- W2897194080 cites W2094187633 @default.
- W2897194080 cites W2102348129 @default.
- W2897194080 cites W2105386417 @default.
- W2897194080 cites W2107966405 @default.
- W2897194080 cites W2110019612 @default.
- W2897194080 cites W2114819256 @default.
- W2897194080 cites W2127832510 @default.
- W2897194080 cites W2129812935 @default.
- W2897194080 cites W2131541495 @default.
- W2897194080 cites W2136251662 @default.
- W2897194080 cites W2153635508 @default.
- W2897194080 cites W2165835468 @default.
- W2897194080 cites W2166923144 @default.
- W2897194080 cites W2171183134 @default.
- W2897194080 cites W2312198368 @default.
- W2897194080 cites W2321547661 @default.
- W2897194080 cites W2338459354 @default.
- W2897194080 cites W2548512560 @default.
- W2897194080 cites W2609615231 @default.
- W2897194080 cites W2736154721 @default.
- W2897194080 cites W2737996023 @default.
- W2897194080 cites W2740976805 @default.
- W2897194080 cites W2743837685 @default.
- W2897194080 cites W2750827587 @default.
- W2897194080 cites W2754507318 @default.
- W2897194080 cites W2756200584 @default.
- W2897194080 cites W2761917471 @default.
- W2897194080 cites W2767340384 @default.
- W2897194080 cites W2768309288 @default.
- W2897194080 cites W2774547437 @default.
- W2897194080 cites W2793560625 @default.
- W2897194080 cites W2793607269 @default.
- W2897194080 cites W2793645503 @default.
- W2897194080 cites W2799870441 @default.
- W2897194080 cites W2810874828 @default.
- W2897194080 cites W2829067510 @default.
- W2897194080 cites W2884158490 @default.
- W2897194080 cites W2885452623 @default.
- W2897194080 cites W2885776085 @default.
- W2897194080 cites W2887702762 @default.
- W2897194080 cites W2887798198 @default.
- W2897194080 doi "https://doi.org/10.1109/tgrs.2018.2867444" @default.
- W2897194080 hasPublicationYear "2019" @default.
- W2897194080 type Work @default.
- W2897194080 sameAs 2897194080 @default.
- W2897194080 citedByCount "53" @default.
- W2897194080 countsByYear W28971940802018 @default.
- W2897194080 countsByYear W28971940802019 @default.
- W2897194080 countsByYear W28971940802020 @default.
- W2897194080 countsByYear W28971940802021 @default.
- W2897194080 countsByYear W28971940802022 @default.
- W2897194080 countsByYear W28971940802023 @default.
- W2897194080 crossrefType "journal-article" @default.
- W2897194080 hasAuthorship W2897194080A5037075182 @default.
- W2897194080 hasAuthorship W2897194080A5042231008 @default.
- W2897194080 hasAuthorship W2897194080A5057514965 @default.
- W2897194080 hasAuthorship W2897194080A5067097659 @default.
- W2897194080 hasAuthorship W2897194080A5080609124 @default.
- W2897194080 hasConcept C11413529 @default.
- W2897194080 hasConcept C115961682 @default.
- W2897194080 hasConcept C120174047 @default.
- W2897194080 hasConcept C138885662 @default.
- W2897194080 hasConcept C153180895 @default.
- W2897194080 hasConcept C154945302 @default.
- W2897194080 hasConcept C159078339 @default.
- W2897194080 hasConcept C207390915 @default.
- W2897194080 hasConcept C33923547 @default.
- W2897194080 hasConcept C41008148 @default.
- W2897194080 hasConcept C41895202 @default.
- W2897194080 hasConcept C57493831 @default.
- W2897194080 hasConcept C73555534 @default.
- W2897194080 hasConceptScore W2897194080C11413529 @default.
- W2897194080 hasConceptScore W2897194080C115961682 @default.
- W2897194080 hasConceptScore W2897194080C120174047 @default.
- W2897194080 hasConceptScore W2897194080C138885662 @default.
- W2897194080 hasConceptScore W2897194080C153180895 @default.
- W2897194080 hasConceptScore W2897194080C154945302 @default.