Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897215838> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2897215838 abstract "Technological advances are providing researchers with larger and larger amounts of data, creating a rich landscape for data scientists to explore and search for meaningful patterns. Novel biomedical imaging techniques over the next 5 to 10 years, for instance, will develop their resolution to the point at which single subject scans might provide terabytes of data. While traditional data analytics cannot handle these large volumes of data, various Big Data statistical methods should be investigated and developed. This is clearly a great challenge for all stages of data management, but most importantly for the analysis and interpretation. In this chapter, we discusse a very recent paradigm and a set of techniques rooted in algebraic topology, which are able to scale and provide useful information within the context of abundant but often low-quality data sets. These techniques, collectively referred to as Topological Data Analysis, can extract meaningful information without the need to rely on specific a priori models or hypotheses. The potential computational and interpretative pitfalls as well as the potential benefits of using a robust-by-design high-order relational data description are also highlighted. Among these, we focus on persistent homology, its combination with machine learning, as well as topological simplification, together with their applications in biomedical signal processing." @default.
- W2897215838 created "2018-10-26" @default.
- W2897215838 creator A5008639824 @default.
- W2897215838 creator A5012319049 @default.
- W2897215838 creator A5063367289 @default.
- W2897215838 date "2018-07-04" @default.
- W2897215838 modified "2023-09-25" @default.
- W2897215838 title "Topological Data Analysis of Biomedical Big Data" @default.
- W2897215838 cites W2345279893 @default.
- W2897215838 doi "https://doi.org/10.1201/9781351061223-11" @default.
- W2897215838 hasPublicationYear "2018" @default.
- W2897215838 type Work @default.
- W2897215838 sameAs 2897215838 @default.
- W2897215838 citedByCount "1" @default.
- W2897215838 countsByYear W28972158382019 @default.
- W2897215838 crossrefType "book-chapter" @default.
- W2897215838 hasAuthorship W2897215838A5008639824 @default.
- W2897215838 hasAuthorship W2897215838A5012319049 @default.
- W2897215838 hasAuthorship W2897215838A5063367289 @default.
- W2897215838 hasConcept C111472728 @default.
- W2897215838 hasConcept C111919701 @default.
- W2897215838 hasConcept C11413529 @default.
- W2897215838 hasConcept C124101348 @default.
- W2897215838 hasConcept C127413603 @default.
- W2897215838 hasConcept C138885662 @default.
- W2897215838 hasConcept C166957645 @default.
- W2897215838 hasConcept C175801342 @default.
- W2897215838 hasConcept C176217482 @default.
- W2897215838 hasConcept C199683683 @default.
- W2897215838 hasConcept C205649164 @default.
- W2897215838 hasConcept C21547014 @default.
- W2897215838 hasConcept C24756922 @default.
- W2897215838 hasConcept C2522767166 @default.
- W2897215838 hasConcept C2776477805 @default.
- W2897215838 hasConcept C2779343474 @default.
- W2897215838 hasConcept C2874115 @default.
- W2897215838 hasConcept C41008148 @default.
- W2897215838 hasConcept C75553542 @default.
- W2897215838 hasConcept C75684735 @default.
- W2897215838 hasConceptScore W2897215838C111472728 @default.
- W2897215838 hasConceptScore W2897215838C111919701 @default.
- W2897215838 hasConceptScore W2897215838C11413529 @default.
- W2897215838 hasConceptScore W2897215838C124101348 @default.
- W2897215838 hasConceptScore W2897215838C127413603 @default.
- W2897215838 hasConceptScore W2897215838C138885662 @default.
- W2897215838 hasConceptScore W2897215838C166957645 @default.
- W2897215838 hasConceptScore W2897215838C175801342 @default.
- W2897215838 hasConceptScore W2897215838C176217482 @default.
- W2897215838 hasConceptScore W2897215838C199683683 @default.
- W2897215838 hasConceptScore W2897215838C205649164 @default.
- W2897215838 hasConceptScore W2897215838C21547014 @default.
- W2897215838 hasConceptScore W2897215838C24756922 @default.
- W2897215838 hasConceptScore W2897215838C2522767166 @default.
- W2897215838 hasConceptScore W2897215838C2776477805 @default.
- W2897215838 hasConceptScore W2897215838C2779343474 @default.
- W2897215838 hasConceptScore W2897215838C2874115 @default.
- W2897215838 hasConceptScore W2897215838C41008148 @default.
- W2897215838 hasConceptScore W2897215838C75553542 @default.
- W2897215838 hasConceptScore W2897215838C75684735 @default.
- W2897215838 hasLocation W28972158381 @default.
- W2897215838 hasOpenAccess W2897215838 @default.
- W2897215838 hasPrimaryLocation W28972158381 @default.
- W2897215838 hasRelatedWork W164431297 @default.
- W2897215838 hasRelatedWork W2589091420 @default.
- W2897215838 hasRelatedWork W2790331597 @default.
- W2897215838 hasRelatedWork W2791222374 @default.
- W2897215838 hasRelatedWork W2897215838 @default.
- W2897215838 hasRelatedWork W3118318757 @default.
- W2897215838 hasRelatedWork W3118340399 @default.
- W2897215838 hasRelatedWork W3138818610 @default.
- W2897215838 hasRelatedWork W3158261881 @default.
- W2897215838 hasRelatedWork W1828582262 @default.
- W2897215838 isParatext "false" @default.
- W2897215838 isRetracted "false" @default.
- W2897215838 magId "2897215838" @default.
- W2897215838 workType "book-chapter" @default.