Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897215892> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2897215892 endingPage "135" @default.
- W2897215892 startingPage "123" @default.
- W2897215892 abstract "Aim. This study was performed to identify the possible physiological and pathogenetic processes taking place in the mitochondrial matrix which create the conditions for lithogenesis of insoluble calcium phosphate salts (calcium carbonate...). Whereas, they can later be deposited in various tissues, taking into account the fact that the formation of calcium phosphate (calcium carbonate ...) in the human body occurs under normal physiological conditions (bone tissue, otolith...). It raises the urgency of the question of understanding the physiological and pathogenetic mechanisms of lithogenesis. Materials and methods . There was carried out a meta-analysis of the functional states of mitochondria, to which we 125 Kubanskij nauchnyj medicinskij vestnik 2018; 25 (5) applied a mathematical model based on the changing direction and velocity of the conjugated thermodynamic and electrochemical parameters (pressure, volume, temperature, Gibbs potential, exergy…). Considering the schemes of the oxidative phosphorylation proposed by R.Mitchell and R.Williams, we created a model of the thermodynamic and electrochemical cycle of mitochondria which gives a deeper understanding of the principles of the mechanisms of the ongoing processes in the system mitochondrial matrix-internal membrane-intermembrane space. Results. Based on the fundamental principle of functional interaction, there were proposed four functional states of mitochondria (M) in thermodynamic and electrochemical (TD-EC) cycle, to which was created a mathematical model that allows to systematize the processes accompanied by the accumulation of the electrochemical potential, in other words, the charge separation (ionization) in the paramembrane space. At the same time, on the one side of the inner membrane (mitochondrial intermembrane space) the positive charge predominates, and on the other side (the mitochondrial matrix) – the negative. These processes, in view of the repulsion of like charges, lead to the increase in pressure both in the mitochondrial matrix and in the intermembrane space. In this sense, the direction of the electrochemical processes, taking place in the intramembrane and intermembrane environment from the position of physical thermodynamics, is similar to the direction of the processes occurring in the compressible ionized gas (plasma). The states of mitochondria are considered when the velocity of electrons along the respiratory chain, which is associated with a change in the thermal potential, changes in the thickness of its internal membrane. For the medium inside the matrix, which is an ultra-microheterogeneous dispersive mass, and also using the thermodynamic analogy with the ionized gas, by the thermal potential (Ǫ) we mean the product of pressure (P) per volume (V): Ǫ= PV. Based on the mathematical model of the thermodynamic behavior of the mitochondria and on the limitations imposed by the laws of physical and chemical thermodynamics, it is established that the greatest degree of thermodynamic perfection in the process of mitochondrial respiration corresponds to the state of respiratory control which, among the set of Functional States, is acceptable to consider the fundamental (basic, the first), in other words, F-I. The hierarchy of the homeostatic system of mitochondria is built according to the degree and speed of energy consumption which constantly switches (fluctuates ...) because life is the consequence of a stable nonequilibrium state of the special molecules, since living systems are never in equilibrium and, due to their free Gibbs energy (G), perform a constant work against the equilibrium. There is a physiological balance between the various functional states competing for the mitochondrial energy resources: 1) involuntary (Gibbs potential G>0) endergonic phosphorylation process which triggers ATP synthase and is accompanied by the cooling; and 2) spontaneous (Gibbs potential G<0) exergonic process that increases the temperature of the external medium. The pathophysiological unbalance of these mechanisms, in which the conditions for the formation of the watersoluble salt of calcium phosphate dihydrate-Ca (H2 PO4 )2 interchange with the poorly soluble calcium hydrogenphosphateСаHPO4 , can be a pathogenetic cause of the occurrence of common diseases (nephrolithiasis, osteochondrosis, atherosclerosis ...). Conclusion. In the thermodynamic and electrochemical cycle of the mitochondrial system matrix-internal membraneintermembrane space, the direction and speed of physiological functional variables, which determine the presence and magnitude of the primary physiological needs, are important. In the multidimensional space of the physiological functional variables there is a gap of functionality. This is the range of parameters variations, the limits of which are distributed according to Gauss and are optimal for the habitat mode in the external environment, which is the cytoplasm in regards to the mitochondria. Going beyond the limits of the gap of functionality promotes the thermodynamic and electrochemical adaptation changes in the mitochondrial system itself which tends to return to the state of the thermodynamic rest, while the mitochondria performs a cyclic process. Relying on the fact that the fundamental principle of the functional expediency establishes the primacy of the maximum residence time of any living system in the defined (normative, permissible ...) limits of the functionality gap, the fluctuations of which are conditioned by the changing external conditions and internal needs, we express confidence that, taking into account the limitations imposed by the laws of physical and chemical thermodynamics, the greatest degree of thermodynamic perfection of the mitochondrial breathing process in the dynamical electrochemical cycle is performed in the state of the respiratory control (F-I), which corresponds to the maximum entropy (S) and the minimum Gibbs energy (G). In the thermodynamic and electrochemical cycle may arise the conditions that include the adaptive biochemical changes that favor the accumulation of Ca2+ in the mitochondrial matrix, and thereby confirm the direct dependence of the calcium retention capacity on the speed of the respiration of mitochondria. At the same time, a significant amount of Ca2+ accumulates in the mitochondrial matrix, which, combined with the hydrophosphate, is transformed into the calcium diphosphate − Ca3 (PO4 )2 , which has an extremely low solubility in water. This may be a primordial mechanism of lithogenesis with the subsequent deposition of calcium phosphate salts in various tissues, causing the diseases at the organ level, in the pathogenesis of which the violation of energy metabolism is common!" @default.
- W2897215892 created "2018-10-26" @default.
- W2897215892 creator A5021131656 @default.
- W2897215892 creator A5024606028 @default.
- W2897215892 creator A5031707935 @default.
- W2897215892 creator A5033349484 @default.
- W2897215892 creator A5049681364 @default.
- W2897215892 date "2018-10-20" @default.
- W2897215892 modified "2023-10-16" @default.
- W2897215892 title "PHYSIOLOGICAL FUNCTIONAL STATES OF MITOCHONDRIA IN THE THERMODYNAMIC AND ELECTROCHEMICAL CYCLE" @default.
- W2897215892 cites W1573765269 @default.
- W2897215892 cites W1964126982 @default.
- W2897215892 cites W1984074867 @default.
- W2897215892 cites W2008362068 @default.
- W2897215892 cites W2016671984 @default.
- W2897215892 cites W2031165402 @default.
- W2897215892 cites W2038062961 @default.
- W2897215892 cites W2041532447 @default.
- W2897215892 cites W2042263669 @default.
- W2897215892 cites W2298568012 @default.
- W2897215892 cites W2379449177 @default.
- W2897215892 cites W99927065 @default.
- W2897215892 doi "https://doi.org/10.25207/1608-6228-2018-25-5-123-135" @default.
- W2897215892 hasPublicationYear "2018" @default.
- W2897215892 type Work @default.
- W2897215892 sameAs 2897215892 @default.
- W2897215892 citedByCount "1" @default.
- W2897215892 countsByYear W28972158922019 @default.
- W2897215892 crossrefType "journal-article" @default.
- W2897215892 hasAuthorship W2897215892A5021131656 @default.
- W2897215892 hasAuthorship W2897215892A5024606028 @default.
- W2897215892 hasAuthorship W2897215892A5031707935 @default.
- W2897215892 hasAuthorship W2897215892A5033349484 @default.
- W2897215892 hasAuthorship W2897215892A5049681364 @default.
- W2897215892 hasBestOaLocation W28972158921 @default.
- W2897215892 hasConcept C104317684 @default.
- W2897215892 hasConcept C125086356 @default.
- W2897215892 hasConcept C12554922 @default.
- W2897215892 hasConcept C146587185 @default.
- W2897215892 hasConcept C147789679 @default.
- W2897215892 hasConcept C17525397 @default.
- W2897215892 hasConcept C178790620 @default.
- W2897215892 hasConcept C185592680 @default.
- W2897215892 hasConcept C186850619 @default.
- W2897215892 hasConcept C28859421 @default.
- W2897215892 hasConcept C519063684 @default.
- W2897215892 hasConcept C52859227 @default.
- W2897215892 hasConcept C547475151 @default.
- W2897215892 hasConcept C55493867 @default.
- W2897215892 hasConcept C57600042 @default.
- W2897215892 hasConcept C86803240 @default.
- W2897215892 hasConcept C95580263 @default.
- W2897215892 hasConceptScore W2897215892C104317684 @default.
- W2897215892 hasConceptScore W2897215892C125086356 @default.
- W2897215892 hasConceptScore W2897215892C12554922 @default.
- W2897215892 hasConceptScore W2897215892C146587185 @default.
- W2897215892 hasConceptScore W2897215892C147789679 @default.
- W2897215892 hasConceptScore W2897215892C17525397 @default.
- W2897215892 hasConceptScore W2897215892C178790620 @default.
- W2897215892 hasConceptScore W2897215892C185592680 @default.
- W2897215892 hasConceptScore W2897215892C186850619 @default.
- W2897215892 hasConceptScore W2897215892C28859421 @default.
- W2897215892 hasConceptScore W2897215892C519063684 @default.
- W2897215892 hasConceptScore W2897215892C52859227 @default.
- W2897215892 hasConceptScore W2897215892C547475151 @default.
- W2897215892 hasConceptScore W2897215892C55493867 @default.
- W2897215892 hasConceptScore W2897215892C57600042 @default.
- W2897215892 hasConceptScore W2897215892C86803240 @default.
- W2897215892 hasConceptScore W2897215892C95580263 @default.
- W2897215892 hasIssue "5" @default.
- W2897215892 hasLocation W28972158921 @default.
- W2897215892 hasLocation W28972158922 @default.
- W2897215892 hasOpenAccess W2897215892 @default.
- W2897215892 hasPrimaryLocation W28972158921 @default.
- W2897215892 hasRelatedWork W1976417809 @default.
- W2897215892 hasRelatedWork W2000148777 @default.
- W2897215892 hasRelatedWork W2000525498 @default.
- W2897215892 hasRelatedWork W2103409993 @default.
- W2897215892 hasRelatedWork W2107660232 @default.
- W2897215892 hasRelatedWork W2887770043 @default.
- W2897215892 hasRelatedWork W2971376835 @default.
- W2897215892 hasRelatedWork W3175337500 @default.
- W2897215892 hasRelatedWork W4254381059 @default.
- W2897215892 hasRelatedWork W4293862446 @default.
- W2897215892 hasVolume "25" @default.
- W2897215892 isParatext "false" @default.
- W2897215892 isRetracted "false" @default.
- W2897215892 magId "2897215892" @default.
- W2897215892 workType "article" @default.