Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897220510> ?p ?o ?g. }
- W2897220510 abstract "1 Abstract Evolutionary theory has produced two conflicting paradigms for the adaptation of a polygenic trait. While population genetics views adaptation as a sequence of selective sweeps at single loci underlying the trait, quantitative genetics posits a collective response, where phenotypic adaptation results from subtle allele frequency shifts at many loci. Yet, a synthesis of these views is largely missing and the population genetic factors that favor each scenario are not well understood. Here, we study the architecture of adaptation of a binary polygenic trait (such as resistance) with negative epistasis among the loci of its basis. The genetic structure of this trait allows for a full range of potential architectures of adaptation, ranging from sweeps to small frequency shifts. By combining computer simulations and a newly devised analytical framework based on Yule branching processes, we gain a detailed understanding of the adaptation dynamics for this trait. Our key analytical result is an expression for the joint distribution of mutant alleles at the end of the adaptive phase. This distribution characterizes the polygenic pattern of adaptation at the underlying genotype when phenotypic adaptation has been accomplished. We find that a single compound parameter, the population-scaled background mutation rate Θ bg , explains the main differences among these patterns. For a focal locus, Θ bg measures the mutation rate at all redundant loci in its genetic background that offer alternative ways for adaptation. For adaptation starting from mutation-selection-drift balance, we observe different patterns in three parameter regions. Adaptation proceeds by sweeps for small Θ bg ≾ 0.1, while small polygenic allele frequency shifts require large Θ bg ≿ 100. In the large intermediate regime, we observe a heterogeneous pattern of partial sweeps at several interacting loci. 2 Author summary It is still an open question how complex traits adapt to new selection pressures. While population genetics champions the search for selective sweeps, quantitative genetics proclaims adaptation via small concerted frequency shifts. To date the empirical evidence of clear sweep signals is more scarce than expected, while subtle shifts remain notoriously hard to detect. In the current study we develop a theoretical framework to predict the expected adaptive architecture of a simple polygenic trait, depending on parameters such as mutation rate, effective population size, size of the trait basis, and the available genetic variability at the onset of selection. For a population in mutation-selection-drift balance we find that adaptation proceeds via complete or partial sweeps for a large set of parameter values. We predict adaptation by small frequency shifts for two main cases. First, for traits with a large mutational target size and high levels of genetic redundancy among loci, and second if the starting frequencies of mutant alleles are more homogeneous than expected in mutation-selection-drift equilibrium, e.g. due to population structure or balancing selection." @default.
- W2897220510 created "2018-10-26" @default.
- W2897220510 creator A5021644376 @default.
- W2897220510 creator A5032789220 @default.
- W2897220510 creator A5046466308 @default.
- W2897220510 date "2018-10-23" @default.
- W2897220510 modified "2023-09-26" @default.
- W2897220510 title "Polygenic adaptation: From sweeps to subtle frequency shifts" @default.
- W2897220510 cites W1133966731 @default.
- W2897220510 cites W1525285200 @default.
- W2897220510 cites W1574004712 @default.
- W2897220510 cites W1816362081 @default.
- W2897220510 cites W1852226811 @default.
- W2897220510 cites W1911509246 @default.
- W2897220510 cites W1932538605 @default.
- W2897220510 cites W1969073369 @default.
- W2897220510 cites W1982703079 @default.
- W2897220510 cites W1982952737 @default.
- W2897220510 cites W2014335315 @default.
- W2897220510 cites W2030611127 @default.
- W2897220510 cites W2034238213 @default.
- W2897220510 cites W2035876046 @default.
- W2897220510 cites W2038816875 @default.
- W2897220510 cites W2044201540 @default.
- W2897220510 cites W2060334493 @default.
- W2897220510 cites W2072201802 @default.
- W2897220510 cites W2098615058 @default.
- W2897220510 cites W2101887201 @default.
- W2897220510 cites W2102481822 @default.
- W2897220510 cites W2102795115 @default.
- W2897220510 cites W2107990492 @default.
- W2897220510 cites W2109601111 @default.
- W2897220510 cites W2116360795 @default.
- W2897220510 cites W2118055782 @default.
- W2897220510 cites W2121208951 @default.
- W2897220510 cites W2122577020 @default.
- W2897220510 cites W2124161469 @default.
- W2897220510 cites W2124653005 @default.
- W2897220510 cites W2135370544 @default.
- W2897220510 cites W2138967494 @default.
- W2897220510 cites W2142232012 @default.
- W2897220510 cites W2146638375 @default.
- W2897220510 cites W2148927912 @default.
- W2897220510 cites W2149960602 @default.
- W2897220510 cites W2153110439 @default.
- W2897220510 cites W2158455759 @default.
- W2897220510 cites W2162983443 @default.
- W2897220510 cites W2393825485 @default.
- W2897220510 cites W2504121104 @default.
- W2897220510 cites W2531014594 @default.
- W2897220510 cites W2551157892 @default.
- W2897220510 cites W2621721891 @default.
- W2897220510 cites W2626606138 @default.
- W2897220510 cites W2725988230 @default.
- W2897220510 cites W2735155748 @default.
- W2897220510 cites W2760066756 @default.
- W2897220510 cites W2787455785 @default.
- W2897220510 cites W2796790031 @default.
- W2897220510 cites W2810267801 @default.
- W2897220510 cites W2810690155 @default.
- W2897220510 cites W2913676002 @default.
- W2897220510 cites W2949280658 @default.
- W2897220510 cites W2952277428 @default.
- W2897220510 cites W2963495906 @default.
- W2897220510 cites W3103471421 @default.
- W2897220510 cites W3104028333 @default.
- W2897220510 cites W3119366910 @default.
- W2897220510 cites W4231633893 @default.
- W2897220510 cites W4232753567 @default.
- W2897220510 cites W4251304755 @default.
- W2897220510 doi "https://doi.org/10.1101/450759" @default.
- W2897220510 hasPublicationYear "2018" @default.
- W2897220510 type Work @default.
- W2897220510 sameAs 2897220510 @default.
- W2897220510 citedByCount "0" @default.
- W2897220510 crossrefType "posted-content" @default.
- W2897220510 hasAuthorship W2897220510A5021644376 @default.
- W2897220510 hasAuthorship W2897220510A5032789220 @default.
- W2897220510 hasAuthorship W2897220510A5046466308 @default.
- W2897220510 hasBestOaLocation W28972205101 @default.
- W2897220510 hasConcept C104317684 @default.
- W2897220510 hasConcept C106934330 @default.
- W2897220510 hasConcept C139807058 @default.
- W2897220510 hasConcept C144024400 @default.
- W2897220510 hasConcept C149923435 @default.
- W2897220510 hasConcept C169760540 @default.
- W2897220510 hasConcept C171578705 @default.
- W2897220510 hasConcept C199360897 @default.
- W2897220510 hasConcept C2780354846 @default.
- W2897220510 hasConcept C2908647359 @default.
- W2897220510 hasConcept C41008148 @default.
- W2897220510 hasConcept C54355233 @default.
- W2897220510 hasConcept C61727976 @default.
- W2897220510 hasConcept C78458016 @default.
- W2897220510 hasConcept C81941488 @default.
- W2897220510 hasConcept C86803240 @default.
- W2897220510 hasConcept C9287583 @default.
- W2897220510 hasConceptScore W2897220510C104317684 @default.
- W2897220510 hasConceptScore W2897220510C106934330 @default.
- W2897220510 hasConceptScore W2897220510C139807058 @default.