Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897224251> ?p ?o ?g. }
- W2897224251 endingPage "2744" @default.
- W2897224251 startingPage "2744" @default.
- W2897224251 abstract "In load predication, point-based forecasting methods have been widely applied. However, uncertainties arising in load predication bring significant challenges for such methods. This therefore drives the development of new methods amongst which interval predication is one of the most effective. In this study, a deep belief network-based lower–upper bound estimation (LUBE) approach is proposed, and a genetic algorithm is applied to reinforce the search ability of the LUBE method, instead of simulated an annealing algorithm. The approach is applied to the short-term load prediction on some realistic electricity load data. To demonstrate the effectiveness and efficiency of the proposed method, it is compared with three state-of-the-art methods. Experimental results show that the proposed approach can significantly improve the predication accuracy." @default.
- W2897224251 created "2018-10-26" @default.
- W2897224251 creator A5015647908 @default.
- W2897224251 creator A5035701638 @default.
- W2897224251 creator A5052494207 @default.
- W2897224251 creator A5063880073 @default.
- W2897224251 creator A5070812231 @default.
- W2897224251 date "2018-10-13" @default.
- W2897224251 modified "2023-10-17" @default.
- W2897224251 title "Short-Term Load Interval Prediction Using a Deep Belief Network" @default.
- W2897224251 cites W1936687626 @default.
- W2897224251 cites W1968219458 @default.
- W2897224251 cites W1976944686 @default.
- W2897224251 cites W2029497022 @default.
- W2897224251 cites W2032220852 @default.
- W2897224251 cites W2037634800 @default.
- W2897224251 cites W2057314736 @default.
- W2897224251 cites W2071258353 @default.
- W2897224251 cites W2083022762 @default.
- W2897224251 cites W2085087091 @default.
- W2897224251 cites W2088538739 @default.
- W2897224251 cites W2122130411 @default.
- W2897224251 cites W2132477882 @default.
- W2897224251 cites W2136922672 @default.
- W2897224251 cites W2144830515 @default.
- W2897224251 cites W2155816288 @default.
- W2897224251 cites W2161234387 @default.
- W2897224251 cites W2178310074 @default.
- W2897224251 cites W2182108635 @default.
- W2897224251 cites W2344916885 @default.
- W2897224251 cites W2521918431 @default.
- W2897224251 cites W2573526403 @default.
- W2897224251 cites W2737654582 @default.
- W2897224251 cites W2754328869 @default.
- W2897224251 cites W2766662061 @default.
- W2897224251 cites W2790002574 @default.
- W2897224251 cites W2808331919 @default.
- W2897224251 cites W2808586429 @default.
- W2897224251 cites W2885599165 @default.
- W2897224251 cites W4321994244 @default.
- W2897224251 cites W4376596133 @default.
- W2897224251 doi "https://doi.org/10.3390/en11102744" @default.
- W2897224251 hasPublicationYear "2018" @default.
- W2897224251 type Work @default.
- W2897224251 sameAs 2897224251 @default.
- W2897224251 citedByCount "3" @default.
- W2897224251 countsByYear W28972242512019 @default.
- W2897224251 countsByYear W28972242512020 @default.
- W2897224251 crossrefType "journal-article" @default.
- W2897224251 hasAuthorship W2897224251A5015647908 @default.
- W2897224251 hasAuthorship W2897224251A5035701638 @default.
- W2897224251 hasAuthorship W2897224251A5052494207 @default.
- W2897224251 hasAuthorship W2897224251A5063880073 @default.
- W2897224251 hasAuthorship W2897224251A5070812231 @default.
- W2897224251 hasBestOaLocation W28972242511 @default.
- W2897224251 hasConcept C103402496 @default.
- W2897224251 hasConcept C11413529 @default.
- W2897224251 hasConcept C114614502 @default.
- W2897224251 hasConcept C119857082 @default.
- W2897224251 hasConcept C121332964 @default.
- W2897224251 hasConcept C124101348 @default.
- W2897224251 hasConcept C126255220 @default.
- W2897224251 hasConcept C126980161 @default.
- W2897224251 hasConcept C134306372 @default.
- W2897224251 hasConcept C154945302 @default.
- W2897224251 hasConcept C2778067643 @default.
- W2897224251 hasConcept C33923547 @default.
- W2897224251 hasConcept C41008148 @default.
- W2897224251 hasConcept C50644808 @default.
- W2897224251 hasConcept C61797465 @default.
- W2897224251 hasConcept C62520636 @default.
- W2897224251 hasConcept C77553402 @default.
- W2897224251 hasConcept C97385483 @default.
- W2897224251 hasConceptScore W2897224251C103402496 @default.
- W2897224251 hasConceptScore W2897224251C11413529 @default.
- W2897224251 hasConceptScore W2897224251C114614502 @default.
- W2897224251 hasConceptScore W2897224251C119857082 @default.
- W2897224251 hasConceptScore W2897224251C121332964 @default.
- W2897224251 hasConceptScore W2897224251C124101348 @default.
- W2897224251 hasConceptScore W2897224251C126255220 @default.
- W2897224251 hasConceptScore W2897224251C126980161 @default.
- W2897224251 hasConceptScore W2897224251C134306372 @default.
- W2897224251 hasConceptScore W2897224251C154945302 @default.
- W2897224251 hasConceptScore W2897224251C2778067643 @default.
- W2897224251 hasConceptScore W2897224251C33923547 @default.
- W2897224251 hasConceptScore W2897224251C41008148 @default.
- W2897224251 hasConceptScore W2897224251C50644808 @default.
- W2897224251 hasConceptScore W2897224251C61797465 @default.
- W2897224251 hasConceptScore W2897224251C62520636 @default.
- W2897224251 hasConceptScore W2897224251C77553402 @default.
- W2897224251 hasConceptScore W2897224251C97385483 @default.
- W2897224251 hasIssue "10" @default.
- W2897224251 hasLocation W28972242511 @default.
- W2897224251 hasLocation W28972242512 @default.
- W2897224251 hasOpenAccess W2897224251 @default.
- W2897224251 hasPrimaryLocation W28972242511 @default.
- W2897224251 hasRelatedWork W1501213224 @default.
- W2897224251 hasRelatedWork W2795261237 @default.