Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897225730> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2897225730 abstract "Osteoarthritis(OA) analysis is one of essential task in health issues. 3D Magnetic Resonance Imaging (MRI) segmentation plays an important role in a highly accurate knee osteoarthritis diagnosis. 3D segmentation knee MRI is challenging task because of complex knee structure, low contrast, noise, and bias field inherent in MRI. Deformable model is one of the most intensively model-based approaches for computer-aided medical image analysis. However, most of deformable models require prior shape and training processing for segmentation [1]. In this paper, we propose a deformable model-based approach with automatic initial point selection to segment knee bones from 3D MRI containing intensity inhomogeneity. This approach does not require manual initial point selection and training phase so that large amount of human resource and time can be saved. Preprocessing performs inhomogeneity correction and extracts voxels of interest in order to prevent leakage the boundary of target objective. The proposed deformable approach is devised by modifying boundary information of a hybrid deformable model [2] to morphological operation. Automated selection of initial point is motivated by 3D multi-edge overlapping technique in the [3] method. Experimental results are demonstrated 3D model comparing with other recent methods of knee bone segmentation [27,28] and 2D slices on both synthetic image with inhomogeneity correction or not. Our approach compared against a hand-segmented ground truth from experts, we achieved an average dice similarity coefficient of 0.951, sensitivity of 0.927, specificity of 0.999, average symmetric surface distance of 1.16 mm, and root mean square symmetric surface of 2.01mm. The result shows that our proposed approach is useful performing simple and accurate bone segmentation for diagnosis." @default.
- W2897225730 created "2018-10-26" @default.
- W2897225730 creator A5000106707 @default.
- W2897225730 creator A5003527503 @default.
- W2897225730 creator A5066829608 @default.
- W2897225730 creator A5080891156 @default.
- W2897225730 creator A5087234779 @default.
- W2897225730 date "2018-10-09" @default.
- W2897225730 modified "2023-10-17" @default.
- W2897225730 title "Development of automated 3D knee bone segmentation with inhomogeneity correction for deformable approach in magnetic resonance imaging" @default.
- W2897225730 cites W1968774077 @default.
- W2897225730 cites W1978250716 @default.
- W2897225730 cites W1990326111 @default.
- W2897225730 cites W2038952578 @default.
- W2897225730 cites W2096579040 @default.
- W2897225730 cites W2101123196 @default.
- W2897225730 cites W2102308673 @default.
- W2897225730 cites W2116040950 @default.
- W2897225730 cites W2129617686 @default.
- W2897225730 cites W2132022374 @default.
- W2897225730 cites W2132087726 @default.
- W2897225730 cites W2135056195 @default.
- W2897225730 cites W2145378482 @default.
- W2897225730 cites W2152826865 @default.
- W2897225730 cites W2284959505 @default.
- W2897225730 cites W2731272562 @default.
- W2897225730 cites W2765331251 @default.
- W2897225730 doi "https://doi.org/10.1145/3264746.3264776" @default.
- W2897225730 hasPublicationYear "2018" @default.
- W2897225730 type Work @default.
- W2897225730 sameAs 2897225730 @default.
- W2897225730 citedByCount "1" @default.
- W2897225730 countsByYear W28972257302022 @default.
- W2897225730 crossrefType "proceedings-article" @default.
- W2897225730 hasAuthorship W2897225730A5000106707 @default.
- W2897225730 hasAuthorship W2897225730A5003527503 @default.
- W2897225730 hasAuthorship W2897225730A5066829608 @default.
- W2897225730 hasAuthorship W2897225730A5080891156 @default.
- W2897225730 hasAuthorship W2897225730A5087234779 @default.
- W2897225730 hasConcept C121332964 @default.
- W2897225730 hasConcept C124504099 @default.
- W2897225730 hasConcept C126838900 @default.
- W2897225730 hasConcept C136229726 @default.
- W2897225730 hasConcept C143409427 @default.
- W2897225730 hasConcept C154945302 @default.
- W2897225730 hasConcept C31972630 @default.
- W2897225730 hasConcept C41008148 @default.
- W2897225730 hasConcept C46141821 @default.
- W2897225730 hasConcept C71924100 @default.
- W2897225730 hasConcept C89600930 @default.
- W2897225730 hasConceptScore W2897225730C121332964 @default.
- W2897225730 hasConceptScore W2897225730C124504099 @default.
- W2897225730 hasConceptScore W2897225730C126838900 @default.
- W2897225730 hasConceptScore W2897225730C136229726 @default.
- W2897225730 hasConceptScore W2897225730C143409427 @default.
- W2897225730 hasConceptScore W2897225730C154945302 @default.
- W2897225730 hasConceptScore W2897225730C31972630 @default.
- W2897225730 hasConceptScore W2897225730C41008148 @default.
- W2897225730 hasConceptScore W2897225730C46141821 @default.
- W2897225730 hasConceptScore W2897225730C71924100 @default.
- W2897225730 hasConceptScore W2897225730C89600930 @default.
- W2897225730 hasLocation W28972257301 @default.
- W2897225730 hasOpenAccess W2897225730 @default.
- W2897225730 hasPrimaryLocation W28972257301 @default.
- W2897225730 hasRelatedWork W1507266234 @default.
- W2897225730 hasRelatedWork W1669643531 @default.
- W2897225730 hasRelatedWork W1721780360 @default.
- W2897225730 hasRelatedWork W2110230079 @default.
- W2897225730 hasRelatedWork W2117664411 @default.
- W2897225730 hasRelatedWork W2117933325 @default.
- W2897225730 hasRelatedWork W2122581818 @default.
- W2897225730 hasRelatedWork W2159066190 @default.
- W2897225730 hasRelatedWork W2739874619 @default.
- W2897225730 hasRelatedWork W1967061043 @default.
- W2897225730 isParatext "false" @default.
- W2897225730 isRetracted "false" @default.
- W2897225730 magId "2897225730" @default.
- W2897225730 workType "article" @default.