Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897225817> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2897225817 abstract "Graph kernels have recently emerged as a promising approach to perform machine learning on graph-structured data. A graph kernel implicitly embedds graphs in a Hilbert space and computes the inner product between these representations. However, the inner product operation greatly limits the representational power of kernels between graphs. In this paper, we propose to perform a series of successive embeddings in order to improve the performance of existing graph kernels and derive more expressive kernels. We first embed the input graphs in a Hilbert space using a graph kernel and then we embed them into another space by employing popular kernels for vector data (e.g., gaussian kernel). Our experiments on several datasets show that by composing kernels, we can achieve significant improvements in classification accuracy." @default.
- W2897225817 created "2018-10-26" @default.
- W2897225817 creator A5011742954 @default.
- W2897225817 creator A5057695979 @default.
- W2897225817 date "2018-10-17" @default.
- W2897225817 modified "2023-10-14" @default.
- W2897225817 title "Enhancing Graph Kernels via Successive Embeddings" @default.
- W2897225817 cites W1816257748 @default.
- W2897225817 cites W2008857988 @default.
- W2897225817 cites W2039444222 @default.
- W2897225817 cites W2142498761 @default.
- W2897225817 cites W2147286743 @default.
- W2897225817 cites W2756654724 @default.
- W2897225817 cites W2808551187 @default.
- W2897225817 doi "https://doi.org/10.1145/3269206.3269289" @default.
- W2897225817 hasPublicationYear "2018" @default.
- W2897225817 type Work @default.
- W2897225817 sameAs 2897225817 @default.
- W2897225817 citedByCount "5" @default.
- W2897225817 countsByYear W28972258172019 @default.
- W2897225817 countsByYear W28972258172020 @default.
- W2897225817 countsByYear W28972258172021 @default.
- W2897225817 countsByYear W28972258172023 @default.
- W2897225817 crossrefType "proceedings-article" @default.
- W2897225817 hasAuthorship W2897225817A5011742954 @default.
- W2897225817 hasAuthorship W2897225817A5057695979 @default.
- W2897225817 hasConcept C100595998 @default.
- W2897225817 hasConcept C11413529 @default.
- W2897225817 hasConcept C118615104 @default.
- W2897225817 hasConcept C122280245 @default.
- W2897225817 hasConcept C12267149 @default.
- W2897225817 hasConcept C132525143 @default.
- W2897225817 hasConcept C134517425 @default.
- W2897225817 hasConcept C154945302 @default.
- W2897225817 hasConcept C160446489 @default.
- W2897225817 hasConcept C195818886 @default.
- W2897225817 hasConcept C202444582 @default.
- W2897225817 hasConcept C203776342 @default.
- W2897225817 hasConcept C33923547 @default.
- W2897225817 hasConcept C41008148 @default.
- W2897225817 hasConcept C43517604 @default.
- W2897225817 hasConcept C62799726 @default.
- W2897225817 hasConcept C68103157 @default.
- W2897225817 hasConcept C74193536 @default.
- W2897225817 hasConcept C80444323 @default.
- W2897225817 hasConcept C80884492 @default.
- W2897225817 hasConceptScore W2897225817C100595998 @default.
- W2897225817 hasConceptScore W2897225817C11413529 @default.
- W2897225817 hasConceptScore W2897225817C118615104 @default.
- W2897225817 hasConceptScore W2897225817C122280245 @default.
- W2897225817 hasConceptScore W2897225817C12267149 @default.
- W2897225817 hasConceptScore W2897225817C132525143 @default.
- W2897225817 hasConceptScore W2897225817C134517425 @default.
- W2897225817 hasConceptScore W2897225817C154945302 @default.
- W2897225817 hasConceptScore W2897225817C160446489 @default.
- W2897225817 hasConceptScore W2897225817C195818886 @default.
- W2897225817 hasConceptScore W2897225817C202444582 @default.
- W2897225817 hasConceptScore W2897225817C203776342 @default.
- W2897225817 hasConceptScore W2897225817C33923547 @default.
- W2897225817 hasConceptScore W2897225817C41008148 @default.
- W2897225817 hasConceptScore W2897225817C43517604 @default.
- W2897225817 hasConceptScore W2897225817C62799726 @default.
- W2897225817 hasConceptScore W2897225817C68103157 @default.
- W2897225817 hasConceptScore W2897225817C74193536 @default.
- W2897225817 hasConceptScore W2897225817C80444323 @default.
- W2897225817 hasConceptScore W2897225817C80884492 @default.
- W2897225817 hasLocation W28972258171 @default.
- W2897225817 hasOpenAccess W2897225817 @default.
- W2897225817 hasPrimaryLocation W28972258171 @default.
- W2897225817 hasRelatedWork W2130792056 @default.
- W2897225817 hasRelatedWork W2153211825 @default.
- W2897225817 hasRelatedWork W2232554483 @default.
- W2897225817 hasRelatedWork W2368062663 @default.
- W2897225817 hasRelatedWork W2535206775 @default.
- W2897225817 hasRelatedWork W2948501913 @default.
- W2897225817 hasRelatedWork W3044340027 @default.
- W2897225817 hasRelatedWork W3118393464 @default.
- W2897225817 hasRelatedWork W4300454542 @default.
- W2897225817 hasRelatedWork W2172290429 @default.
- W2897225817 isParatext "false" @default.
- W2897225817 isRetracted "false" @default.
- W2897225817 magId "2897225817" @default.
- W2897225817 workType "article" @default.