Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897272951> ?p ?o ?g. }
- W2897272951 endingPage "70" @default.
- W2897272951 startingPage "64" @default.
- W2897272951 abstract "Poor-quality retinal images do not allow an accurate medical diagnosis, and it is inconvenient for a patient to return to a medical center to repeat the fundus photography exam. In this paper, a robust automatic system is proposed to assess the quality of retinal images at the moment of the acquisition, aiming at assisting health care professionals during a fundus photography exam. We propose a convolutional neural network (CNN) pretrained on non-medical images for extracting general image features. The weights of the CNN are further adjusted via a fine-tuning procedure, resulting in a performant classifier obtained only with a small quantity of labeled images. The CNN performance was evaluated on two publicly available databases (i.e., DRIMDB and ELSA-Brasil) using two different procedures: intra-database and inter-database cross-validation. The CNN achieved an area under the curve (AUC) of 99.98% on DRIMDB and an AUC of 98.56% on ELSA-Brasil in the inter-database experiment, where training and testing were not performed on the same database. These results show the robustness of the proposed model to various image acquisitions without requiring special adaptation, thus making it a good candidate for use in operational clinical scenarios." @default.
- W2897272951 created "2018-10-26" @default.
- W2897272951 creator A5014964230 @default.
- W2897272951 creator A5024825227 @default.
- W2897272951 creator A5057109648 @default.
- W2897272951 creator A5090788783 @default.
- W2897272951 date "2018-12-01" @default.
- W2897272951 modified "2023-10-16" @default.
- W2897272951 title "Retinal image quality assessment using deep learning" @default.
- W2897272951 cites W2005772228 @default.
- W2897272951 cites W2023260945 @default.
- W2897272951 cites W2058816799 @default.
- W2897272951 cites W2066454956 @default.
- W2897272951 cites W2100704456 @default.
- W2897272951 cites W2145427343 @default.
- W2897272951 cites W2159764117 @default.
- W2897272951 cites W2160473736 @default.
- W2897272951 cites W2245042066 @default.
- W2897272951 cites W2263861417 @default.
- W2897272951 cites W2346062110 @default.
- W2897272951 cites W2520931630 @default.
- W2897272951 cites W2952436003 @default.
- W2897272951 doi "https://doi.org/10.1016/j.compbiomed.2018.10.004" @default.
- W2897272951 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30340214" @default.
- W2897272951 hasPublicationYear "2018" @default.
- W2897272951 type Work @default.
- W2897272951 sameAs 2897272951 @default.
- W2897272951 citedByCount "71" @default.
- W2897272951 countsByYear W28972729512019 @default.
- W2897272951 countsByYear W28972729512020 @default.
- W2897272951 countsByYear W28972729512021 @default.
- W2897272951 countsByYear W28972729512022 @default.
- W2897272951 countsByYear W28972729512023 @default.
- W2897272951 crossrefType "journal-article" @default.
- W2897272951 hasAuthorship W2897272951A5014964230 @default.
- W2897272951 hasAuthorship W2897272951A5024825227 @default.
- W2897272951 hasAuthorship W2897272951A5057109648 @default.
- W2897272951 hasAuthorship W2897272951A5090788783 @default.
- W2897272951 hasConcept C104317684 @default.
- W2897272951 hasConcept C108583219 @default.
- W2897272951 hasConcept C115961682 @default.
- W2897272951 hasConcept C118487528 @default.
- W2897272951 hasConcept C119657128 @default.
- W2897272951 hasConcept C119857082 @default.
- W2897272951 hasConcept C142362112 @default.
- W2897272951 hasConcept C153180895 @default.
- W2897272951 hasConcept C153349607 @default.
- W2897272951 hasConcept C154945302 @default.
- W2897272951 hasConcept C185592680 @default.
- W2897272951 hasConcept C2776474195 @default.
- W2897272951 hasConcept C2780248432 @default.
- W2897272951 hasConcept C2780827179 @default.
- W2897272951 hasConcept C31972630 @default.
- W2897272951 hasConcept C41008148 @default.
- W2897272951 hasConcept C55020928 @default.
- W2897272951 hasConcept C55493867 @default.
- W2897272951 hasConcept C63479239 @default.
- W2897272951 hasConcept C71924100 @default.
- W2897272951 hasConcept C81363708 @default.
- W2897272951 hasConcept C95623464 @default.
- W2897272951 hasConceptScore W2897272951C104317684 @default.
- W2897272951 hasConceptScore W2897272951C108583219 @default.
- W2897272951 hasConceptScore W2897272951C115961682 @default.
- W2897272951 hasConceptScore W2897272951C118487528 @default.
- W2897272951 hasConceptScore W2897272951C119657128 @default.
- W2897272951 hasConceptScore W2897272951C119857082 @default.
- W2897272951 hasConceptScore W2897272951C142362112 @default.
- W2897272951 hasConceptScore W2897272951C153180895 @default.
- W2897272951 hasConceptScore W2897272951C153349607 @default.
- W2897272951 hasConceptScore W2897272951C154945302 @default.
- W2897272951 hasConceptScore W2897272951C185592680 @default.
- W2897272951 hasConceptScore W2897272951C2776474195 @default.
- W2897272951 hasConceptScore W2897272951C2780248432 @default.
- W2897272951 hasConceptScore W2897272951C2780827179 @default.
- W2897272951 hasConceptScore W2897272951C31972630 @default.
- W2897272951 hasConceptScore W2897272951C41008148 @default.
- W2897272951 hasConceptScore W2897272951C55020928 @default.
- W2897272951 hasConceptScore W2897272951C55493867 @default.
- W2897272951 hasConceptScore W2897272951C63479239 @default.
- W2897272951 hasConceptScore W2897272951C71924100 @default.
- W2897272951 hasConceptScore W2897272951C81363708 @default.
- W2897272951 hasConceptScore W2897272951C95623464 @default.
- W2897272951 hasFunder F4320322025 @default.
- W2897272951 hasFunder F4320323682 @default.
- W2897272951 hasLocation W28972729511 @default.
- W2897272951 hasLocation W28972729512 @default.
- W2897272951 hasLocation W28972729513 @default.
- W2897272951 hasLocation W28972729514 @default.
- W2897272951 hasOpenAccess W2897272951 @default.
- W2897272951 hasPrimaryLocation W28972729511 @default.
- W2897272951 hasRelatedWork W2035976912 @default.
- W2897272951 hasRelatedWork W2541791370 @default.
- W2897272951 hasRelatedWork W2731899572 @default.
- W2897272951 hasRelatedWork W2999805992 @default.
- W2897272951 hasRelatedWork W3116150086 @default.
- W2897272951 hasRelatedWork W3133861977 @default.
- W2897272951 hasRelatedWork W4200173597 @default.
- W2897272951 hasRelatedWork W4312417841 @default.