Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897299750> ?p ?o ?g. }
- W2897299750 endingPage "10" @default.
- W2897299750 startingPage "1" @default.
- W2897299750 abstract "Data-driven methods have been successfully used in modern industrial production. The sufficient data is the basis for implementing these methods. However, it is often impossible to meet the requirement for a new industrial process. In this study, an improved JYKPLS (Joint-Y kernel partial least squares) process transfer model is proposed to solve this issue and perform final product quality prediction for a new batch process. Based on the latent variable transfer technology, the rich information from similar old process data is transferred to accelerate the proceeding of building a new process model. The requirements on the amount of modeling data and prior knowledge of new processes are visibly reduced. Moreover, in order to handle the nonlinear correlation in process data, the kernel function is introduced to make data linear and separable. With actual productions operating, the transfer model is improved gradually by updating it with online data. When the prediction error falls into its confidence interval, the old data with lower similarity will be eliminated to avoid the negative transfer. The prediction results of penicillin concentration verify the effectiveness of the proposed method." @default.
- W2897299750 created "2018-10-26" @default.
- W2897299750 creator A5033005600 @default.
- W2897299750 creator A5035211904 @default.
- W2897299750 creator A5059871747 @default.
- W2897299750 creator A5073773211 @default.
- W2897299750 creator A5075396691 @default.
- W2897299750 date "2018-12-01" @default.
- W2897299750 modified "2023-10-16" @default.
- W2897299750 title "Final quality prediction method for new batch processes based on improved JYKPLS process transfer model" @default.
- W2897299750 cites W1966753498 @default.
- W2897299750 cites W1971385464 @default.
- W2897299750 cites W1977230515 @default.
- W2897299750 cites W1980147362 @default.
- W2897299750 cites W1981790327 @default.
- W2897299750 cites W1985546458 @default.
- W2897299750 cites W1986795354 @default.
- W2897299750 cites W1992880816 @default.
- W2897299750 cites W2000378386 @default.
- W2897299750 cites W2010708437 @default.
- W2897299750 cites W2014714070 @default.
- W2897299750 cites W2022735044 @default.
- W2897299750 cites W2047138503 @default.
- W2897299750 cites W2065090303 @default.
- W2897299750 cites W2074146581 @default.
- W2897299750 cites W2095271222 @default.
- W2897299750 cites W2099121642 @default.
- W2897299750 cites W2123375513 @default.
- W2897299750 cites W2127687247 @default.
- W2897299750 cites W2133826245 @default.
- W2897299750 cites W2201252546 @default.
- W2897299750 cites W2333407321 @default.
- W2897299750 cites W2336108511 @default.
- W2897299750 cites W2461449499 @default.
- W2897299750 cites W2462582445 @default.
- W2897299750 cites W2475348444 @default.
- W2897299750 cites W2570822839 @default.
- W2897299750 cites W2588880771 @default.
- W2897299750 cites W2603312108 @default.
- W2897299750 cites W2771545712 @default.
- W2897299750 cites W2789440825 @default.
- W2897299750 cites W2791136550 @default.
- W2897299750 cites W2803546399 @default.
- W2897299750 doi "https://doi.org/10.1016/j.chemolab.2018.10.004" @default.
- W2897299750 hasPublicationYear "2018" @default.
- W2897299750 type Work @default.
- W2897299750 sameAs 2897299750 @default.
- W2897299750 citedByCount "23" @default.
- W2897299750 countsByYear W28972997502019 @default.
- W2897299750 countsByYear W28972997502020 @default.
- W2897299750 countsByYear W28972997502021 @default.
- W2897299750 countsByYear W28972997502022 @default.
- W2897299750 countsByYear W28972997502023 @default.
- W2897299750 crossrefType "journal-article" @default.
- W2897299750 hasAuthorship W2897299750A5033005600 @default.
- W2897299750 hasAuthorship W2897299750A5035211904 @default.
- W2897299750 hasAuthorship W2897299750A5059871747 @default.
- W2897299750 hasAuthorship W2897299750A5073773211 @default.
- W2897299750 hasAuthorship W2897299750A5075396691 @default.
- W2897299750 hasConcept C111472728 @default.
- W2897299750 hasConcept C111919701 @default.
- W2897299750 hasConcept C114614502 @default.
- W2897299750 hasConcept C124101348 @default.
- W2897299750 hasConcept C138885662 @default.
- W2897299750 hasConcept C2778067643 @default.
- W2897299750 hasConcept C2779530757 @default.
- W2897299750 hasConcept C33923547 @default.
- W2897299750 hasConcept C41008148 @default.
- W2897299750 hasConcept C74193536 @default.
- W2897299750 hasConcept C98045186 @default.
- W2897299750 hasConceptScore W2897299750C111472728 @default.
- W2897299750 hasConceptScore W2897299750C111919701 @default.
- W2897299750 hasConceptScore W2897299750C114614502 @default.
- W2897299750 hasConceptScore W2897299750C124101348 @default.
- W2897299750 hasConceptScore W2897299750C138885662 @default.
- W2897299750 hasConceptScore W2897299750C2778067643 @default.
- W2897299750 hasConceptScore W2897299750C2779530757 @default.
- W2897299750 hasConceptScore W2897299750C33923547 @default.
- W2897299750 hasConceptScore W2897299750C41008148 @default.
- W2897299750 hasConceptScore W2897299750C74193536 @default.
- W2897299750 hasConceptScore W2897299750C98045186 @default.
- W2897299750 hasFunder F4320321001 @default.
- W2897299750 hasFunder F4320322769 @default.
- W2897299750 hasFunder F4320335787 @default.
- W2897299750 hasLocation W28972997501 @default.
- W2897299750 hasOpenAccess W2897299750 @default.
- W2897299750 hasPrimaryLocation W28972997501 @default.
- W2897299750 hasRelatedWork W2006100586 @default.
- W2897299750 hasRelatedWork W2039972010 @default.
- W2897299750 hasRelatedWork W2057271981 @default.
- W2897299750 hasRelatedWork W2103373899 @default.
- W2897299750 hasRelatedWork W2352015183 @default.
- W2897299750 hasRelatedWork W2367223136 @default.
- W2897299750 hasRelatedWork W2741862378 @default.
- W2897299750 hasRelatedWork W2796568981 @default.
- W2897299750 hasRelatedWork W3086618278 @default.
- W2897299750 hasRelatedWork W4300809132 @default.
- W2897299750 hasVolume "183" @default.