Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897315820> ?p ?o ?g. }
- W2897315820 abstract "It is well established that the packing density (volume fraction) of the random close packed (RCP) state of congruent three-dimensional spheres, i.e., ${ensuremath{varphi}}_{c}ensuremath{sim}0.64$, can be improved by introducing particle size polydispersity. In addition, the RCP density ${ensuremath{varphi}}_{c}$ can also be increased by perturbing the particle shape from a perfect sphere to nonspherical shapes (e.g., superballs or ellipsoids). In this paper, we numerically investigate the coupling effects of particle size and shape on improving the density of disordered polydisperse particle packings in a quantitative manner. A previously introduced concept of ``equivalent diameter'' (${D}_{e}$), which encodes information of both the particle volume and shape, is reexamined and utilized to quantify the effective size of a nonspherical particle in the disordered packing. In a highly disordered packing of mixed shapes (i.e., polydispersity in particle shapes) with particles of identical ${D}_{e}$, i.e., no size dispersity effects, we find that the overall specific volume $e$ (reciprocal of ${ensuremath{varphi}}_{c}$) can be expressed as a linear combination of the specific volume ${e}_{k}$ for each component $k$ (particles with identical shape), weighted by its corresponding volume fraction ${X}_{k}$ in the mixture, i.e., $e={ensuremath{sum}}_{k}{X}_{k}{e}_{k}$. In this case, the mixed-shape packing can be considered as a superposition of RCP packings of each component (shape) as implied by a set Voronoi tessellation and contact number analysis. When size polydispersity is added, i.e., ${D}_{e}$ of particles varies, the overall packing density can be decomposed as ${ensuremath{varphi}}_{c}={ensuremath{varphi}}_{L}+{f}_{mathrm{inc}}$, where ${ensuremath{varphi}}_{L}$ is the linear part determined by the superposition law, i.e., ${ensuremath{varphi}}_{L}=1/{ensuremath{sum}}_{k}{X}_{k}{e}_{k}$, and ${f}_{mathrm{inc}}$ is the incremental part owing to the size polydispersity. We empirically estimate ${f}_{mathrm{inc}}$ using two distribution parameters, and apply a shape-dependent modification to improve the accuracy from $ensuremath{sim}0.01$ to $ensuremath{sim}0.005$. Especially for nearly spherical particles, ${f}_{mathrm{inc}}$ is only weakly coupled with the particle shape. Generalized polydisperse packings even with a moderate size ratio ($ensuremath{sim}4$) can achieve a relatively high density ${ensuremath{varphi}}_{c}ensuremath{sim}0.8$ compared with polydisperse sphere packings. Our results also have implications for the rational design of granular materials and model glass formers." @default.
- W2897315820 created "2018-10-26" @default.
- W2897315820 creator A5000294980 @default.
- W2897315820 creator A5010069354 @default.
- W2897315820 creator A5025677708 @default.
- W2897315820 creator A5044892239 @default.
- W2897315820 creator A5059011630 @default.
- W2897315820 date "2018-10-10" @default.
- W2897315820 modified "2023-10-15" @default.
- W2897315820 title "Coupling effects of particle size and shape on improving the density of disordered polydisperse packings" @default.
- W2897315820 cites W1512345277 @default.
- W2897315820 cites W1768829127 @default.
- W2897315820 cites W1965430444 @default.
- W2897315820 cites W1967283798 @default.
- W2897315820 cites W1970323593 @default.
- W2897315820 cites W1976814600 @default.
- W2897315820 cites W1982545153 @default.
- W2897315820 cites W1987599614 @default.
- W2897315820 cites W1990414082 @default.
- W2897315820 cites W1992072972 @default.
- W2897315820 cites W2007641161 @default.
- W2897315820 cites W2018068818 @default.
- W2897315820 cites W2025596398 @default.
- W2897315820 cites W2033669050 @default.
- W2897315820 cites W2035178137 @default.
- W2897315820 cites W2043977131 @default.
- W2897315820 cites W2050167188 @default.
- W2897315820 cites W2050195176 @default.
- W2897315820 cites W2056218024 @default.
- W2897315820 cites W2056972380 @default.
- W2897315820 cites W2057439276 @default.
- W2897315820 cites W2057567843 @default.
- W2897315820 cites W2066929557 @default.
- W2897315820 cites W2067537054 @default.
- W2897315820 cites W2077730636 @default.
- W2897315820 cites W2081781543 @default.
- W2897315820 cites W2082036409 @default.
- W2897315820 cites W2085739034 @default.
- W2897315820 cites W2089851391 @default.
- W2897315820 cites W2090210375 @default.
- W2897315820 cites W2093580178 @default.
- W2897315820 cites W2097133273 @default.
- W2897315820 cites W2098056529 @default.
- W2897315820 cites W2103546192 @default.
- W2897315820 cites W2115228846 @default.
- W2897315820 cites W2118320533 @default.
- W2897315820 cites W2135439699 @default.
- W2897315820 cites W2151615836 @default.
- W2897315820 cites W2166772812 @default.
- W2897315820 cites W2241410894 @default.
- W2897315820 cites W2319925185 @default.
- W2897315820 cites W2327747991 @default.
- W2897315820 cites W2330866403 @default.
- W2897315820 cites W2333474966 @default.
- W2897315820 cites W2334712202 @default.
- W2897315820 cites W2565214685 @default.
- W2897315820 cites W2616807439 @default.
- W2897315820 cites W2694421171 @default.
- W2897315820 cites W2736618389 @default.
- W2897315820 cites W2767007782 @default.
- W2897315820 cites W2770416647 @default.
- W2897315820 cites W2963378248 @default.
- W2897315820 cites W2988943056 @default.
- W2897315820 cites W3100847470 @default.
- W2897315820 cites W3104995655 @default.
- W2897315820 doi "https://doi.org/10.1103/physreve.98.042903" @default.
- W2897315820 hasPublicationYear "2018" @default.
- W2897315820 type Work @default.
- W2897315820 sameAs 2897315820 @default.
- W2897315820 citedByCount "31" @default.
- W2897315820 countsByYear W28973158202019 @default.
- W2897315820 countsByYear W28973158202020 @default.
- W2897315820 countsByYear W28973158202021 @default.
- W2897315820 countsByYear W28973158202022 @default.
- W2897315820 countsByYear W28973158202023 @default.
- W2897315820 crossrefType "journal-article" @default.
- W2897315820 hasAuthorship W2897315820A5000294980 @default.
- W2897315820 hasAuthorship W2897315820A5010069354 @default.
- W2897315820 hasAuthorship W2897315820A5025677708 @default.
- W2897315820 hasAuthorship W2897315820A5044892239 @default.
- W2897315820 hasAuthorship W2897315820A5059011630 @default.
- W2897315820 hasConcept C110161667 @default.
- W2897315820 hasConcept C111368507 @default.
- W2897315820 hasConcept C11432220 @default.
- W2897315820 hasConcept C121332964 @default.
- W2897315820 hasConcept C127313418 @default.
- W2897315820 hasConcept C1276947 @default.
- W2897315820 hasConcept C135649769 @default.
- W2897315820 hasConcept C147789679 @default.
- W2897315820 hasConcept C183893376 @default.
- W2897315820 hasConcept C185592680 @default.
- W2897315820 hasConcept C187530423 @default.
- W2897315820 hasConcept C188027245 @default.
- W2897315820 hasConcept C192562407 @default.
- W2897315820 hasConcept C20556612 @default.
- W2897315820 hasConcept C24881265 @default.
- W2897315820 hasConcept C2524010 @default.
- W2897315820 hasConcept C2778517922 @default.
- W2897315820 hasConcept C33923547 @default.
- W2897315820 hasConcept C46141821 @default.