Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897318468> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2897318468 abstract "In this paper, the quality and size of training data are investigated for improving the training efficacy of artificial neural network (ANN) to generate Lorenz chaotic system and predict the time series outputs using Nonlinear Auto-Regressive (NAR) model. The designed NAR ANN model will be used for the simulation and analysis of Electroencephalogram (EEG) signals captured from brain activities. A simple ANN topology with a single hidden layer is used, and different ANN architectures with varying number of hidden neurons (n=3 to 16) and input delays (d=1 to 4) are trained with Levenberg-Marquardt algorithm using the MATLAB Neural Network Toolbox. The training results are investigated by comparing two aspects of the training data: size and precision. It is found that for any given ANN architecture, the training performance cannot be improved by solely increasing the training data size in the case of Lorenz system, which is useful knowledge towards reducing the training data size of EEG signals required for training ANN-based NAR model. On the other hand, the training performance can be improved by training data with the same size but better precision. Moreover, when training data with the same size and precision is used, the training performance varies depends on the segment of the Lorenz chaotic trajectory used for the training and can worsen if the changing rate of the selected segment represented by the training data is high." @default.
- W2897318468 created "2018-10-26" @default.
- W2897318468 creator A5056676522 @default.
- W2897318468 date "2018-07-01" @default.
- W2897318468 modified "2023-09-25" @default.
- W2897318468 title "Improving the Efficacy of Artificial Neural Network Training by Optimizing Training Data for the Simulation and Prediction of Electroencephalogram Chaotic Patterns" @default.
- W2897318468 cites W1987387046 @default.
- W2897318468 cites W2040263621 @default.
- W2897318468 cites W2108598243 @default.
- W2897318468 cites W2131242650 @default.
- W2897318468 cites W2155482699 @default.
- W2897318468 cites W2163605009 @default.
- W2897318468 cites W2165093166 @default.
- W2897318468 cites W2645542328 @default.
- W2897318468 cites W2736748092 @default.
- W2897318468 cites W2786300701 @default.
- W2897318468 cites W2919115771 @default.
- W2897318468 cites W746190499 @default.
- W2897318468 doi "https://doi.org/10.1109/icci-cc.2018.8482071" @default.
- W2897318468 hasPublicationYear "2018" @default.
- W2897318468 type Work @default.
- W2897318468 sameAs 2897318468 @default.
- W2897318468 citedByCount "1" @default.
- W2897318468 countsByYear W28973184682019 @default.
- W2897318468 crossrefType "proceedings-article" @default.
- W2897318468 hasAuthorship W2897318468A5056676522 @default.
- W2897318468 hasConcept C111919701 @default.
- W2897318468 hasConcept C119857082 @default.
- W2897318468 hasConcept C121332964 @default.
- W2897318468 hasConcept C151510863 @default.
- W2897318468 hasConcept C153180895 @default.
- W2897318468 hasConcept C153294291 @default.
- W2897318468 hasConcept C154945302 @default.
- W2897318468 hasConcept C155032097 @default.
- W2897318468 hasConcept C158622935 @default.
- W2897318468 hasConcept C2777052490 @default.
- W2897318468 hasConcept C2777211547 @default.
- W2897318468 hasConcept C2780365114 @default.
- W2897318468 hasConcept C41008148 @default.
- W2897318468 hasConcept C50644808 @default.
- W2897318468 hasConcept C62520636 @default.
- W2897318468 hasConceptScore W2897318468C111919701 @default.
- W2897318468 hasConceptScore W2897318468C119857082 @default.
- W2897318468 hasConceptScore W2897318468C121332964 @default.
- W2897318468 hasConceptScore W2897318468C151510863 @default.
- W2897318468 hasConceptScore W2897318468C153180895 @default.
- W2897318468 hasConceptScore W2897318468C153294291 @default.
- W2897318468 hasConceptScore W2897318468C154945302 @default.
- W2897318468 hasConceptScore W2897318468C155032097 @default.
- W2897318468 hasConceptScore W2897318468C158622935 @default.
- W2897318468 hasConceptScore W2897318468C2777052490 @default.
- W2897318468 hasConceptScore W2897318468C2777211547 @default.
- W2897318468 hasConceptScore W2897318468C2780365114 @default.
- W2897318468 hasConceptScore W2897318468C41008148 @default.
- W2897318468 hasConceptScore W2897318468C50644808 @default.
- W2897318468 hasConceptScore W2897318468C62520636 @default.
- W2897318468 hasLocation W28973184681 @default.
- W2897318468 hasOpenAccess W2897318468 @default.
- W2897318468 hasPrimaryLocation W28973184681 @default.
- W2897318468 hasRelatedWork W1587050645 @default.
- W2897318468 hasRelatedWork W2031934192 @default.
- W2897318468 hasRelatedWork W2039247195 @default.
- W2897318468 hasRelatedWork W2085123548 @default.
- W2897318468 hasRelatedWork W2129435924 @default.
- W2897318468 hasRelatedWork W2323654707 @default.
- W2897318468 hasRelatedWork W236987384 @default.
- W2897318468 hasRelatedWork W2897318468 @default.
- W2897318468 hasRelatedWork W2977857027 @default.
- W2897318468 hasRelatedWork W3126254266 @default.
- W2897318468 isParatext "false" @default.
- W2897318468 isRetracted "false" @default.
- W2897318468 magId "2897318468" @default.
- W2897318468 workType "article" @default.