Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897319337> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2897319337 abstract "Purpose This paper aims to present a finite element formulation to approximate systems of reaction–diffusion–advection equations, focusing on cases with nonlinear reaction. The formulation is based on the orthogonal sub-grid scale approach, with some simplifications that allow one to stabilize only the convective term, which is the source of potential instabilities. The space approximation is combined with finite difference time integration and a Newton–Raphson linearization of the reactive term. Some numerical examples show the accuracy of the resulting formulation. Applications using classical nonlinear reaction models in population dynamics are also provided, showing the robustness of the approach proposed. Design/methodology/approach A stabilized finite element method for advection–diffusion–reaction equations to the problem on nonlinear reaction is adapted. The formulation designed has been implemented in a computer code. Numerical examples are run to show the accuracy and robustness of the formulation. Findings The stabilized finite element method from which the authors depart can be adapted to problems with nonlinear reaction. The resulting method is very robust and accurate. The framework developed is applicable to several problems of interest by themselves, such as the predator–prey model. Originality/value A stabilized finite element method to problems with nonlinear reaction has been extended. Original contributions are the design of the stabilization parameters and the linearization of the problem. The application examples, apart from demonstrating the validity of the numerical model, help to get insight in the system of nonlinear equations being solved." @default.
- W2897319337 created "2018-10-26" @default.
- W2897319337 creator A5034861941 @default.
- W2897319337 creator A5074378693 @default.
- W2897319337 date "2018-10-17" @default.
- W2897319337 modified "2023-10-01" @default.
- W2897319337 title "Finite element modeling of nonlinear reaction–diffusion–advection systems of equations" @default.
- W2897319337 cites W1974301594 @default.
- W2897319337 cites W2023667918 @default.
- W2897319337 cites W2061191702 @default.
- W2897319337 cites W2079949023 @default.
- W2897319337 cites W2112281543 @default.
- W2897319337 cites W2114185825 @default.
- W2897319337 cites W2121376665 @default.
- W2897319337 cites W2138325350 @default.
- W2897319337 cites W2278142357 @default.
- W2897319337 doi "https://doi.org/10.1108/hff-02-2018-0077" @default.
- W2897319337 hasPublicationYear "2018" @default.
- W2897319337 type Work @default.
- W2897319337 sameAs 2897319337 @default.
- W2897319337 citedByCount "3" @default.
- W2897319337 countsByYear W28973193372020 @default.
- W2897319337 countsByYear W28973193372022 @default.
- W2897319337 crossrefType "journal-article" @default.
- W2897319337 hasAuthorship W2897319337A5034861941 @default.
- W2897319337 hasAuthorship W2897319337A5074378693 @default.
- W2897319337 hasConcept C104317684 @default.
- W2897319337 hasConcept C11210021 @default.
- W2897319337 hasConcept C121231716 @default.
- W2897319337 hasConcept C121332964 @default.
- W2897319337 hasConcept C126255220 @default.
- W2897319337 hasConcept C134306372 @default.
- W2897319337 hasConcept C135628077 @default.
- W2897319337 hasConcept C144468803 @default.
- W2897319337 hasConcept C158622935 @default.
- W2897319337 hasConcept C181330731 @default.
- W2897319337 hasConcept C185592680 @default.
- W2897319337 hasConcept C28826006 @default.
- W2897319337 hasConcept C33923547 @default.
- W2897319337 hasConcept C41008148 @default.
- W2897319337 hasConcept C55493867 @default.
- W2897319337 hasConcept C62520636 @default.
- W2897319337 hasConcept C63479239 @default.
- W2897319337 hasConcept C97355855 @default.
- W2897319337 hasConceptScore W2897319337C104317684 @default.
- W2897319337 hasConceptScore W2897319337C11210021 @default.
- W2897319337 hasConceptScore W2897319337C121231716 @default.
- W2897319337 hasConceptScore W2897319337C121332964 @default.
- W2897319337 hasConceptScore W2897319337C126255220 @default.
- W2897319337 hasConceptScore W2897319337C134306372 @default.
- W2897319337 hasConceptScore W2897319337C135628077 @default.
- W2897319337 hasConceptScore W2897319337C144468803 @default.
- W2897319337 hasConceptScore W2897319337C158622935 @default.
- W2897319337 hasConceptScore W2897319337C181330731 @default.
- W2897319337 hasConceptScore W2897319337C185592680 @default.
- W2897319337 hasConceptScore W2897319337C28826006 @default.
- W2897319337 hasConceptScore W2897319337C33923547 @default.
- W2897319337 hasConceptScore W2897319337C41008148 @default.
- W2897319337 hasConceptScore W2897319337C55493867 @default.
- W2897319337 hasConceptScore W2897319337C62520636 @default.
- W2897319337 hasConceptScore W2897319337C63479239 @default.
- W2897319337 hasConceptScore W2897319337C97355855 @default.
- W2897319337 hasLocation W28973193371 @default.
- W2897319337 hasOpenAccess W2897319337 @default.
- W2897319337 hasPrimaryLocation W28973193371 @default.
- W2897319337 hasRelatedWork W1970893634 @default.
- W2897319337 hasRelatedWork W1983748407 @default.
- W2897319337 hasRelatedWork W1984822934 @default.
- W2897319337 hasRelatedWork W2078497527 @default.
- W2897319337 hasRelatedWork W2345986836 @default.
- W2897319337 hasRelatedWork W2890860035 @default.
- W2897319337 hasRelatedWork W2897227399 @default.
- W2897319337 hasRelatedWork W2897319337 @default.
- W2897319337 hasRelatedWork W2918150957 @default.
- W2897319337 hasRelatedWork W374977727 @default.
- W2897319337 isParatext "false" @default.
- W2897319337 isRetracted "false" @default.
- W2897319337 magId "2897319337" @default.
- W2897319337 workType "article" @default.