Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897319953> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2897319953 abstract "The simplest linear combination of time series forecasters has shown a better performance than individual models. Thus, many researchers have sought to combine models for improving the forecasting process. This paper introduces a copulas-based approach (CB) for aggregating forecasters. The CB is based on the Cacoullos copula, with architecture divided into three parts: Single Modelling, Marginal Probability Distribution Computational and Joint Probability Distribution Computation. In the first part, the forecasts of individual models are obtained. In the second part, the residuals of the individuals models are calculated. In the third part, the models are combined via Cacoullos copula, based on the obtained residuals. The paper also evaluates the performance of the CB via simulated as well as financial time series (e.g. Google Stock Value). Thus, a comparative analysis is presented between CB and individual models (e.g. Artificial Neural Networks) and alternative combined forecasters (e.g. Simple Average-SA and Normal copula-CN). This study showed that the CB model produces better results when compared with the individual models, SA and CN." @default.
- W2897319953 created "2018-10-26" @default.
- W2897319953 creator A5019648667 @default.
- W2897319953 creator A5035227367 @default.
- W2897319953 creator A5040062331 @default.
- W2897319953 creator A5055046285 @default.
- W2897319953 creator A5088972060 @default.
- W2897319953 date "2018-07-01" @default.
- W2897319953 modified "2023-09-25" @default.
- W2897319953 title "Aggregation of Time Series Forecasts via Cacoullos Copula" @default.
- W2897319953 cites W1498665337 @default.
- W2897319953 cites W1608292140 @default.
- W2897319953 cites W1964168965 @default.
- W2897319953 cites W1988991002 @default.
- W2897319953 cites W1997022452 @default.
- W2897319953 cites W2008442094 @default.
- W2897319953 cites W2011787805 @default.
- W2897319953 cites W2037269865 @default.
- W2897319953 cites W2055721038 @default.
- W2897319953 cites W2057936711 @default.
- W2897319953 cites W2058905279 @default.
- W2897319953 cites W2091409464 @default.
- W2897319953 cites W2093652038 @default.
- W2897319953 cites W2118020555 @default.
- W2897319953 cites W2119436275 @default.
- W2897319953 cites W2124776405 @default.
- W2897319953 cites W2159188796 @default.
- W2897319953 cites W2161596194 @default.
- W2897319953 cites W2531058791 @default.
- W2897319953 cites W2536690300 @default.
- W2897319953 cites W2907233437 @default.
- W2897319953 cites W2114001875 @default.
- W2897319953 doi "https://doi.org/10.1109/ijcnn.2018.8489098" @default.
- W2897319953 hasPublicationYear "2018" @default.
- W2897319953 type Work @default.
- W2897319953 sameAs 2897319953 @default.
- W2897319953 citedByCount "0" @default.
- W2897319953 crossrefType "proceedings-article" @default.
- W2897319953 hasAuthorship W2897319953A5019648667 @default.
- W2897319953 hasAuthorship W2897319953A5035227367 @default.
- W2897319953 hasAuthorship W2897319953A5040062331 @default.
- W2897319953 hasAuthorship W2897319953A5055046285 @default.
- W2897319953 hasAuthorship W2897319953A5088972060 @default.
- W2897319953 hasConcept C105795698 @default.
- W2897319953 hasConcept C11413529 @default.
- W2897319953 hasConcept C122123141 @default.
- W2897319953 hasConcept C149441793 @default.
- W2897319953 hasConcept C149782125 @default.
- W2897319953 hasConcept C165216359 @default.
- W2897319953 hasConcept C17618745 @default.
- W2897319953 hasConcept C18653775 @default.
- W2897319953 hasConcept C33923547 @default.
- W2897319953 hasConcept C41008148 @default.
- W2897319953 hasConcept C45374587 @default.
- W2897319953 hasConceptScore W2897319953C105795698 @default.
- W2897319953 hasConceptScore W2897319953C11413529 @default.
- W2897319953 hasConceptScore W2897319953C122123141 @default.
- W2897319953 hasConceptScore W2897319953C149441793 @default.
- W2897319953 hasConceptScore W2897319953C149782125 @default.
- W2897319953 hasConceptScore W2897319953C165216359 @default.
- W2897319953 hasConceptScore W2897319953C17618745 @default.
- W2897319953 hasConceptScore W2897319953C18653775 @default.
- W2897319953 hasConceptScore W2897319953C33923547 @default.
- W2897319953 hasConceptScore W2897319953C41008148 @default.
- W2897319953 hasConceptScore W2897319953C45374587 @default.
- W2897319953 hasLocation W28973199531 @default.
- W2897319953 hasOpenAccess W2897319953 @default.
- W2897319953 hasPrimaryLocation W28973199531 @default.
- W2897319953 hasRelatedWork W2031077553 @default.
- W2897319953 hasRelatedWork W2111878440 @default.
- W2897319953 hasRelatedWork W2185444534 @default.
- W2897319953 hasRelatedWork W2317016030 @default.
- W2897319953 hasRelatedWork W2326333768 @default.
- W2897319953 hasRelatedWork W2383655479 @default.
- W2897319953 hasRelatedWork W2384728495 @default.
- W2897319953 hasRelatedWork W2739610387 @default.
- W2897319953 hasRelatedWork W3123783122 @default.
- W2897319953 hasRelatedWork W801889541 @default.
- W2897319953 isParatext "false" @default.
- W2897319953 isRetracted "false" @default.
- W2897319953 magId "2897319953" @default.
- W2897319953 workType "article" @default.