Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897326341> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2897326341 abstract "This paper addresses the problem of long term location prediction for collision avoidance in Connected Vehicle (CV) environment where more information about the road and traffic data is available through vehicle-to-vehicle and vehicle-to-infrastructure communications. Gaussian Process Regression (GPR) is used to learn motion patterns from historical trajectory data collected with static sensors on the road. Trained models are then shared among the vehicles through connected vehicle cloud. A vehicle receives information, such as Global Positioning System coordinates, about nearby vehicles on the road using inter-vehicular communication. The collected data from vehicles together with GPR models received from infrastructure are then used to predict the future trajectories of vehicles in the scene. The contributions of this work are twofold. First, we propose the use of GPR in CV environment as a framework for long term location prediction. Second, we evaluate the effect of pre-analysis of training data via clustering in improving the trajectory pattern learning performance. Experiments using real-world traffic data collected in Los Angeles, California, US show that our proposed method improves prediction accuracy compared to the baseline kinematic models." @default.
- W2897326341 created "2018-10-26" @default.
- W2897326341 creator A5008779348 @default.
- W2897326341 creator A5011776428 @default.
- W2897326341 creator A5039748930 @default.
- W2897326341 date "2018-06-01" @default.
- W2897326341 modified "2023-10-16" @default.
- W2897326341 title "Vehicle Trajectory Prediction with Gaussian Process Regression in Connected Vehicle Environment$star$" @default.
- W2897326341 cites W1549517954 @default.
- W2897326341 cites W1911740741 @default.
- W2897326341 cites W1993267444 @default.
- W2897326341 cites W2038705758 @default.
- W2897326341 cites W2079150870 @default.
- W2897326341 cites W2097545165 @default.
- W2897326341 cites W2100469802 @default.
- W2897326341 cites W2102124639 @default.
- W2897326341 cites W2105934661 @default.
- W2897326341 cites W2137693329 @default.
- W2897326341 cites W2154997940 @default.
- W2897326341 cites W2238394955 @default.
- W2897326341 cites W2334470880 @default.
- W2897326341 cites W2532858102 @default.
- W2897326341 cites W2964193755 @default.
- W2897326341 doi "https://doi.org/10.1109/ivs.2018.8500614" @default.
- W2897326341 hasPublicationYear "2018" @default.
- W2897326341 type Work @default.
- W2897326341 sameAs 2897326341 @default.
- W2897326341 citedByCount "31" @default.
- W2897326341 countsByYear W28973263412019 @default.
- W2897326341 countsByYear W28973263412020 @default.
- W2897326341 countsByYear W28973263412021 @default.
- W2897326341 countsByYear W28973263412022 @default.
- W2897326341 countsByYear W28973263412023 @default.
- W2897326341 crossrefType "proceedings-article" @default.
- W2897326341 hasAuthorship W2897326341A5008779348 @default.
- W2897326341 hasAuthorship W2897326341A5011776428 @default.
- W2897326341 hasAuthorship W2897326341A5039748930 @default.
- W2897326341 hasConcept C105795698 @default.
- W2897326341 hasConcept C111919701 @default.
- W2897326341 hasConcept C119857082 @default.
- W2897326341 hasConcept C121332964 @default.
- W2897326341 hasConcept C1276947 @default.
- W2897326341 hasConcept C134306372 @default.
- W2897326341 hasConcept C13662910 @default.
- W2897326341 hasConcept C152877465 @default.
- W2897326341 hasConcept C154945302 @default.
- W2897326341 hasConcept C163716315 @default.
- W2897326341 hasConcept C2780897414 @default.
- W2897326341 hasConcept C33923547 @default.
- W2897326341 hasConcept C41008148 @default.
- W2897326341 hasConcept C61326573 @default.
- W2897326341 hasConcept C62520636 @default.
- W2897326341 hasConcept C81692654 @default.
- W2897326341 hasConcept C83546350 @default.
- W2897326341 hasConcept C98045186 @default.
- W2897326341 hasConceptScore W2897326341C105795698 @default.
- W2897326341 hasConceptScore W2897326341C111919701 @default.
- W2897326341 hasConceptScore W2897326341C119857082 @default.
- W2897326341 hasConceptScore W2897326341C121332964 @default.
- W2897326341 hasConceptScore W2897326341C1276947 @default.
- W2897326341 hasConceptScore W2897326341C134306372 @default.
- W2897326341 hasConceptScore W2897326341C13662910 @default.
- W2897326341 hasConceptScore W2897326341C152877465 @default.
- W2897326341 hasConceptScore W2897326341C154945302 @default.
- W2897326341 hasConceptScore W2897326341C163716315 @default.
- W2897326341 hasConceptScore W2897326341C2780897414 @default.
- W2897326341 hasConceptScore W2897326341C33923547 @default.
- W2897326341 hasConceptScore W2897326341C41008148 @default.
- W2897326341 hasConceptScore W2897326341C61326573 @default.
- W2897326341 hasConceptScore W2897326341C62520636 @default.
- W2897326341 hasConceptScore W2897326341C81692654 @default.
- W2897326341 hasConceptScore W2897326341C83546350 @default.
- W2897326341 hasConceptScore W2897326341C98045186 @default.
- W2897326341 hasLocation W28973263411 @default.
- W2897326341 hasOpenAccess W2897326341 @default.
- W2897326341 hasPrimaryLocation W28973263411 @default.
- W2897326341 hasRelatedWork W1997052242 @default.
- W2897326341 hasRelatedWork W2047016096 @default.
- W2897326341 hasRelatedWork W2376872241 @default.
- W2897326341 hasRelatedWork W3039982143 @default.
- W2897326341 hasRelatedWork W3163805564 @default.
- W2897326341 hasRelatedWork W3185162181 @default.
- W2897326341 hasRelatedWork W3201060151 @default.
- W2897326341 hasRelatedWork W4206579646 @default.
- W2897326341 hasRelatedWork W4281724213 @default.
- W2897326341 hasRelatedWork W4287073795 @default.
- W2897326341 isParatext "false" @default.
- W2897326341 isRetracted "false" @default.
- W2897326341 magId "2897326341" @default.
- W2897326341 workType "article" @default.