Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897335953> ?p ?o ?g. }
- W2897335953 endingPage "365" @default.
- W2897335953 startingPage "352" @default.
- W2897335953 abstract "Organic matter can be associated with mineralization in hydrothermal ore deposits. One hypothesis is that this organic matter represents remnants of organic fluids (crude oils) that were competing with aqueous fluids for metal transport and contributed to metal endowment. We investigated the transport of gold (Au) in model oil compounds (S-free n-dodecane, CH3(CH2)10CH3, DD; and S-bearing 1-dodecanethiol, CH3(CH2)10CH2SH; DDT) from 25 °C to 250 °C using in-situ synchrotron X-ray absorption spectroscopy (XAS) experiments to determine the speciation and the structural properties of gold complexes in the aqueous- and oil-based fluids. For most experiments, DD or DDT were in contact with Au-bearing acidified water, or acidified water plus 10 wt% NaCl (pH25°C = 1.85 in both cases). Gold rapidly partitioned from the aqueous phase into DD and DDT. Below 125 °C, Au(III)Cl is dominant in the DD and the adjacent water with a refined coordination number (CN) of chloride of 4.0(3) and an AuCl bond length of 2.28 Å, consistent with the tetrachloroaurate complex (AuCl4−) being stable in both the aqueous and organic phases. In contrast, Au(III) is rapidly reduced in the presence of DDT and an Au(I) complex dominates in both water and adjacent DDT with a CN of sulfur ∼2.0, suggesting a [RS-Au-SR]− (RS = DDT with deprotonated thiol group) complex with AuS bond lengths ranging from 2.29(1) Å to 2.31(3) Å. In an open system of DDT in contact with water, of which the water and DDT were analyzed separately, AuCl4− was dominant in the water phase, and Au(RS)2− dominant in DDT, possibly due to different equilibration kinetics in the beaker and glassy carbon tube. Since sulfur and organothiol compounds are ubiquitous and abundant components in natural oils, this study demonstrates the potential of natural oils to scavenge and enrich gold from co-existing gold-bearing brines. In particular, Au(I) organothiol complexes may contribute to transport in low-temperature (<125 °C) ore fluids such as those in basinal environments – in both hydrothermal fluids and oils. At temperatures ≥125 °C, gold was reduced to metallic gold in all experiments, suggesting that organo-stabilized nanoparticles may be the major form of gold to be scavenged, concentrated or transported in crude oils at these conditions. The results imply that brine-oil interactions may enrich Au in oils, and that oils may be an effective ore fluid in sedimentary environments." @default.
- W2897335953 created "2018-10-26" @default.
- W2897335953 creator A5009255054 @default.
- W2897335953 creator A5033482117 @default.
- W2897335953 creator A5033850826 @default.
- W2897335953 creator A5036238217 @default.
- W2897335953 creator A5058829648 @default.
- W2897335953 creator A5089202257 @default.
- W2897335953 date "2019-01-01" @default.
- W2897335953 modified "2023-10-15" @default.
- W2897335953 title "Crude oils as ore fluids: An experimental in-situ XAS study of gold partitioning between brine and organic fluid from 25 to 250 °C" @default.
- W2897335953 cites W137723437 @default.
- W2897335953 cites W1486648819 @default.
- W2897335953 cites W1534053237 @default.
- W2897335953 cites W1628886620 @default.
- W2897335953 cites W167074037 @default.
- W2897335953 cites W1949220332 @default.
- W2897335953 cites W1966177718 @default.
- W2897335953 cites W1967768451 @default.
- W2897335953 cites W1970433717 @default.
- W2897335953 cites W1973885013 @default.
- W2897335953 cites W1973912200 @default.
- W2897335953 cites W1975861833 @default.
- W2897335953 cites W1976307556 @default.
- W2897335953 cites W1978508772 @default.
- W2897335953 cites W1989222642 @default.
- W2897335953 cites W1990648522 @default.
- W2897335953 cites W1991108678 @default.
- W2897335953 cites W1995261771 @default.
- W2897335953 cites W2003181874 @default.
- W2897335953 cites W2006737361 @default.
- W2897335953 cites W2010110408 @default.
- W2897335953 cites W2012493723 @default.
- W2897335953 cites W2013602721 @default.
- W2897335953 cites W2014739908 @default.
- W2897335953 cites W2018547314 @default.
- W2897335953 cites W2023692073 @default.
- W2897335953 cites W2025742271 @default.
- W2897335953 cites W2028929156 @default.
- W2897335953 cites W2029286947 @default.
- W2897335953 cites W2030408447 @default.
- W2897335953 cites W2031053938 @default.
- W2897335953 cites W2031471445 @default.
- W2897335953 cites W2033878695 @default.
- W2897335953 cites W2035877353 @default.
- W2897335953 cites W2036385373 @default.
- W2897335953 cites W2038463111 @default.
- W2897335953 cites W2038976832 @default.
- W2897335953 cites W2039091805 @default.
- W2897335953 cites W2039151987 @default.
- W2897335953 cites W2041853608 @default.
- W2897335953 cites W2046458643 @default.
- W2897335953 cites W2048419852 @default.
- W2897335953 cites W2053839418 @default.
- W2897335953 cites W2060955206 @default.
- W2897335953 cites W2063606616 @default.
- W2897335953 cites W2064295439 @default.
- W2897335953 cites W2069513828 @default.
- W2897335953 cites W2070227796 @default.
- W2897335953 cites W2071008865 @default.
- W2897335953 cites W2071783181 @default.
- W2897335953 cites W2075749675 @default.
- W2897335953 cites W2076201070 @default.
- W2897335953 cites W2077228161 @default.
- W2897335953 cites W2079168516 @default.
- W2897335953 cites W2084775465 @default.
- W2897335953 cites W2084785541 @default.
- W2897335953 cites W2086831542 @default.
- W2897335953 cites W2087568432 @default.
- W2897335953 cites W2087806970 @default.
- W2897335953 cites W2088685575 @default.
- W2897335953 cites W2089022071 @default.
- W2897335953 cites W2107834451 @default.
- W2897335953 cites W2121045348 @default.
- W2897335953 cites W2123826066 @default.
- W2897335953 cites W2130337482 @default.
- W2897335953 cites W2144482366 @default.
- W2897335953 cites W2152341437 @default.
- W2897335953 cites W2168387226 @default.
- W2897335953 cites W2255915046 @default.
- W2897335953 cites W2315962575 @default.
- W2897335953 cites W2335065448 @default.
- W2897335953 cites W2335503169 @default.
- W2897335953 cites W2408539868 @default.
- W2897335953 cites W2529942260 @default.
- W2897335953 cites W2536070714 @default.
- W2897335953 cites W2563924141 @default.
- W2897335953 cites W2731552288 @default.
- W2897335953 cites W2739412796 @default.
- W2897335953 cites W2751550002 @default.
- W2897335953 cites W2772978212 @default.
- W2897335953 cites W4246841434 @default.
- W2897335953 cites W4249507709 @default.
- W2897335953 doi "https://doi.org/10.1016/j.gca.2018.10.007" @default.
- W2897335953 hasPublicationYear "2019" @default.
- W2897335953 type Work @default.
- W2897335953 sameAs 2897335953 @default.
- W2897335953 citedByCount "19" @default.