Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897378983> ?p ?o ?g. }
- W2897378983 abstract "Deep convolutional neural network (DCNN) has achieved an outstanding performance in large-scale image recognition task because of its discriminative feature representation ability, and pre-trained DCNN models trained for one task have also been applied to domains that are different from their original purposes. Inspired by this idea, a novel hand-dorsa vein recognition model is constructed by adopting DCNN pre-trained on a large-scale database as a universal feature descriptor. However, due to the sparse distribution property of vein information, it is difficult to employ pre-trained DCNN model to extract discriminative deep convolutional features. Therefore, to obtain useful and discriminative deep convolutional features, a novel minutiae-based weighting aggregation (MWA) method is proposed. In specific, the proposed global max-pooling of preserving spatial position information is applied on the feature maps of convolutional layer to localize the minutiae of vein information, and then the minutiae feature of vein image is regarded as the mask that is named as minutiae feature mask, to select deep convolutional features that contain minutiae feature information of vein image. The final feature representation is formed by concatenating each selected deep convolutional feature that is generated by each minutiae feature mask. Series rigorous experiments on the lab-made database are conducted to evidence the effectiveness and feasibility of the proposed MWA for vein recognition. What’s more, an additional experiment with subset of PolyU database illustrates its generalization ability and robustness." @default.
- W2897378983 created "2018-10-26" @default.
- W2897378983 creator A5011057377 @default.
- W2897378983 creator A5019152413 @default.
- W2897378983 creator A5027065447 @default.
- W2897378983 creator A5033385891 @default.
- W2897378983 creator A5080002208 @default.
- W2897378983 creator A5085600894 @default.
- W2897378983 date "2018-01-01" @default.
- W2897378983 modified "2023-09-24" @default.
- W2897378983 title "Minutiae-Based Weighting Aggregation of Deep Convolutional Features for Vein Recognition" @default.
- W2897378983 cites W1676552347 @default.
- W2897378983 cites W1686810756 @default.
- W2897378983 cites W170507967 @default.
- W2897378983 cites W1950843348 @default.
- W2897378983 cites W1979931042 @default.
- W2897378983 cites W2004228893 @default.
- W2897378983 cites W2031337792 @default.
- W2897378983 cites W2036227434 @default.
- W2897378983 cites W2038122242 @default.
- W2897378983 cites W2039536345 @default.
- W2897378983 cites W2045146865 @default.
- W2897378983 cites W2052094314 @default.
- W2897378983 cites W2052506731 @default.
- W2897378983 cites W2054432162 @default.
- W2897378983 cites W2078983375 @default.
- W2897378983 cites W2102335270 @default.
- W2897378983 cites W2114214092 @default.
- W2897378983 cites W2119605622 @default.
- W2897378983 cites W2131081720 @default.
- W2897378983 cites W2145287260 @default.
- W2897378983 cites W2151103935 @default.
- W2897378983 cites W2177274842 @default.
- W2897378983 cites W2184438434 @default.
- W2897378983 cites W2295107390 @default.
- W2897378983 cites W23846308 @default.
- W2897378983 cites W2397074132 @default.
- W2897378983 cites W2569747121 @default.
- W2897378983 cites W2624517164 @default.
- W2897378983 cites W2740462425 @default.
- W2897378983 cites W2755722600 @default.
- W2897378983 cites W2774211385 @default.
- W2897378983 cites W2794030560 @default.
- W2897378983 cites W2803474166 @default.
- W2897378983 cites W67396794 @default.
- W2897378983 cites W79760040 @default.
- W2897378983 doi "https://doi.org/10.1109/access.2018.2876396" @default.
- W2897378983 hasPublicationYear "2018" @default.
- W2897378983 type Work @default.
- W2897378983 sameAs 2897378983 @default.
- W2897378983 citedByCount "9" @default.
- W2897378983 countsByYear W28973789832019 @default.
- W2897378983 countsByYear W28973789832020 @default.
- W2897378983 countsByYear W28973789832022 @default.
- W2897378983 crossrefType "journal-article" @default.
- W2897378983 hasAuthorship W2897378983A5011057377 @default.
- W2897378983 hasAuthorship W2897378983A5019152413 @default.
- W2897378983 hasAuthorship W2897378983A5027065447 @default.
- W2897378983 hasAuthorship W2897378983A5033385891 @default.
- W2897378983 hasAuthorship W2897378983A5080002208 @default.
- W2897378983 hasAuthorship W2897378983A5085600894 @default.
- W2897378983 hasBestOaLocation W28973789831 @default.
- W2897378983 hasConcept C126838900 @default.
- W2897378983 hasConcept C138885662 @default.
- W2897378983 hasConcept C153180895 @default.
- W2897378983 hasConcept C154945302 @default.
- W2897378983 hasConcept C168406668 @default.
- W2897378983 hasConcept C183115368 @default.
- W2897378983 hasConcept C2776401178 @default.
- W2897378983 hasConcept C2777826928 @default.
- W2897378983 hasConcept C41008148 @default.
- W2897378983 hasConcept C41895202 @default.
- W2897378983 hasConcept C52622490 @default.
- W2897378983 hasConcept C67174900 @default.
- W2897378983 hasConcept C71924100 @default.
- W2897378983 hasConcept C81363708 @default.
- W2897378983 hasConcept C97931131 @default.
- W2897378983 hasConceptScore W2897378983C126838900 @default.
- W2897378983 hasConceptScore W2897378983C138885662 @default.
- W2897378983 hasConceptScore W2897378983C153180895 @default.
- W2897378983 hasConceptScore W2897378983C154945302 @default.
- W2897378983 hasConceptScore W2897378983C168406668 @default.
- W2897378983 hasConceptScore W2897378983C183115368 @default.
- W2897378983 hasConceptScore W2897378983C2776401178 @default.
- W2897378983 hasConceptScore W2897378983C2777826928 @default.
- W2897378983 hasConceptScore W2897378983C41008148 @default.
- W2897378983 hasConceptScore W2897378983C41895202 @default.
- W2897378983 hasConceptScore W2897378983C52622490 @default.
- W2897378983 hasConceptScore W2897378983C67174900 @default.
- W2897378983 hasConceptScore W2897378983C71924100 @default.
- W2897378983 hasConceptScore W2897378983C81363708 @default.
- W2897378983 hasConceptScore W2897378983C97931131 @default.
- W2897378983 hasFunder F4320335787 @default.
- W2897378983 hasLocation W28973789831 @default.
- W2897378983 hasOpenAccess W2897378983 @default.
- W2897378983 hasPrimaryLocation W28973789831 @default.
- W2897378983 hasRelatedWork W1581672832 @default.
- W2897378983 hasRelatedWork W2474764233 @default.
- W2897378983 hasRelatedWork W2523700426 @default.
- W2897378983 hasRelatedWork W2780667241 @default.