Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897401543> ?p ?o ?g. }
- W2897401543 endingPage "30" @default.
- W2897401543 startingPage "15" @default.
- W2897401543 abstract "Global food security is negatively affected by drought. Climate projections show that drought frequency and intensity may increase in different parts of the globe. These increases are particularly hazardous for developing countries. Early season forecasts on drought occurrence and severity could help to better mitigate the negative consequences of drought. The objective of this study was to assess if interannual variability in agricultural productivity in Chile can be accurately predicted from freely-available, near real-time data sources. As the response variable, we used the standard score of seasonal cumulative NDVI (zcNDVI), based on 2000–2017 data from Moderate Resolution Imaging Spectroradiometer (MODIS), as a proxy for anomalies of seasonal primary productivity. The predictions were performed with forecast lead times from one- to six-month before the end of the growing season, which varied between census units in Chile. Predictor variables included the zcNDVI obtained by cumulating NDVI from season start up to prediction time; standardised precipitation indices derived from satellite rainfall estimates, for time-scales of 1, 3, 6, 12 and 24 months; the Pacific Decadal Oscillation and the Multivariate ENSO oscillation indices; the length of the growing season, and latitude and longitude. For each of the 758 census units considered, the time series of the response and the predictor variables were averaged for agricultural areas resulting in a 17-season time series per unit for each variable. We used two prediction approaches: (i) optimal linear regression (OLR) whereby for each census unit the single predictor was selected that best explained the interannual zcNDVI variability, and (ii) a multi-layer feedforward neural network architecture, often called deep learning (DL), where all predictors for all units were combined in a single spatio-temporal model. Both approaches were evaluated with a leave-one-year-out cross-validation procedure. Both methods showed good prediction accuracies for small lead times and similar values for all lead times. The mean Rcv2 values for OLR were 0.95, 0.83, 0.68, 0.56, 0.46 and 0.37, against 0.96, 0.84, 0.65, 0.54, 0.46 and 0.38 for DL, for one, two, three, four, five, and six months lead time, respectively. Given the wide range of climates and vegetation types covered within the study area, we expect that the presented models can contribute to an improved early warning system for agricultural drought in different geographical settings around the globe." @default.
- W2897401543 created "2018-10-26" @default.
- W2897401543 creator A5020570515 @default.
- W2897401543 creator A5037139982 @default.
- W2897401543 creator A5048524569 @default.
- W2897401543 creator A5070843904 @default.
- W2897401543 creator A5079630319 @default.
- W2897401543 date "2018-12-01" @default.
- W2897401543 modified "2023-10-15" @default.
- W2897401543 title "Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices" @default.
- W2897401543 cites W1881981391 @default.
- W2897401543 cites W1897589344 @default.
- W2897401543 cites W1963933342 @default.
- W2897401543 cites W1964425467 @default.
- W2897401543 cites W1965037174 @default.
- W2897401543 cites W1965040246 @default.
- W2897401543 cites W1968496754 @default.
- W2897401543 cites W1979521378 @default.
- W2897401543 cites W1980595709 @default.
- W2897401543 cites W1981978730 @default.
- W2897401543 cites W1985787779 @default.
- W2897401543 cites W1985893659 @default.
- W2897401543 cites W1987415163 @default.
- W2897401543 cites W1989074151 @default.
- W2897401543 cites W1995091554 @default.
- W2897401543 cites W1995622703 @default.
- W2897401543 cites W1996150336 @default.
- W2897401543 cites W1997862097 @default.
- W2897401543 cites W1997893060 @default.
- W2897401543 cites W2000372390 @default.
- W2897401543 cites W2001747391 @default.
- W2897401543 cites W2013513194 @default.
- W2897401543 cites W2014927013 @default.
- W2897401543 cites W2015522309 @default.
- W2897401543 cites W2021184758 @default.
- W2897401543 cites W2026971306 @default.
- W2897401543 cites W2028501442 @default.
- W2897401543 cites W2029348212 @default.
- W2897401543 cites W2031441528 @default.
- W2897401543 cites W2033804135 @default.
- W2897401543 cites W2033996972 @default.
- W2897401543 cites W2038229026 @default.
- W2897401543 cites W2039049978 @default.
- W2897401543 cites W2042692910 @default.
- W2897401543 cites W2044615381 @default.
- W2897401543 cites W2058860201 @default.
- W2897401543 cites W2059627215 @default.
- W2897401543 cites W2067956280 @default.
- W2897401543 cites W2068371905 @default.
- W2897401543 cites W2070521524 @default.
- W2897401543 cites W2071455200 @default.
- W2897401543 cites W2075728409 @default.
- W2897401543 cites W2077766806 @default.
- W2897401543 cites W2077814694 @default.
- W2897401543 cites W2077968790 @default.
- W2897401543 cites W2082819436 @default.
- W2897401543 cites W2088135986 @default.
- W2897401543 cites W2093273670 @default.
- W2897401543 cites W2098630292 @default.
- W2897401543 cites W2099698780 @default.
- W2897401543 cites W2101108516 @default.
- W2897401543 cites W2101999464 @default.
- W2897401543 cites W2104005642 @default.
- W2897401543 cites W2106440894 @default.
- W2897401543 cites W2106668301 @default.
- W2897401543 cites W2108886061 @default.
- W2897401543 cites W2109880334 @default.
- W2897401543 cites W2112056217 @default.
- W2897401543 cites W2113410727 @default.
- W2897401543 cites W2115521437 @default.
- W2897401543 cites W2119893173 @default.
- W2897401543 cites W2124564759 @default.
- W2897401543 cites W2125011060 @default.
- W2897401543 cites W2127170577 @default.
- W2897401543 cites W2133677532 @default.
- W2897401543 cites W2135274825 @default.
- W2897401543 cites W2140166354 @default.
- W2897401543 cites W2146243542 @default.
- W2897401543 cites W2146939523 @default.
- W2897401543 cites W2152208495 @default.
- W2897401543 cites W2158268769 @default.
- W2897401543 cites W2165808849 @default.
- W2897401543 cites W2166428194 @default.
- W2897401543 cites W2169245074 @default.
- W2897401543 cites W2170280355 @default.
- W2897401543 cites W2175550040 @default.
- W2897401543 cites W2198334748 @default.
- W2897401543 cites W2261645655 @default.
- W2897401543 cites W2293006232 @default.
- W2897401543 cites W2295804997 @default.
- W2897401543 cites W2299779902 @default.
- W2897401543 cites W2336426693 @default.
- W2897401543 cites W2395814628 @default.
- W2897401543 cites W2468565069 @default.
- W2897401543 cites W2473924042 @default.
- W2897401543 cites W2480349008 @default.
- W2897401543 cites W2499464888 @default.
- W2897401543 cites W2508394613 @default.