Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897403449> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2897403449 abstract "Abstract During Drilling and Completion (D&C) operations large volumes of data are typically collected in oil and gas fields. These datasets typically contain hidden (valuable) information that could be used to improve D&C performance (e.g., by identifying bottlenecks in drilling operations, analyzing non-productive time, optimizing rig schedule based on key indicators, etc.). Unfortunately, D&C datasets are typically not well suited for data mining: they are not structured, they are text heavy and they often contain numerous gaps and errors that hinder automated pre-processing techniques. In this paper, an innovative method to automatically extract smart analytics and opportunities from D&C reports is presented. Initially, a combination of Natural Language Processing, Data Mining, and Machine Learning algorithms are used to quality check a large volume of drilling data (including the text in the daily drilling reports), extract crucial information, and predict the non-productive time and its type. This results in a significant reduction of the labor-intensive quality check task for thousands of datasets and also the unbiased classification of the events. Then, the D&C datasets are integrated with other data sources such as production, geology, reservoir, etc. to generate a set of crucial drilling and reservoir management metrics. The proposed method, which was successfully applied to fields in North and South America, is applied here to two onshore fields located in the Middle East. By applying the developed tool, the data processing and integration time that used to take months to accomplish could be reduced to only a few days. In addition, analyzing metrics such as the Drilling Efficiency Index, normalized drilling days for each field and well type, cost analysis, detailed analysis of non-productive time, effect of completion parameters on production, design efficiency, etc. enabled us to quickly identify the D&C bottlenecks in each field and provide customized solutions to diagnose each problem. In addition, the historical data was used to improve future rig scheduling and resource allocation by applying advanced optimization algorithms with cumulative oil production, net present value, and operation time as the objective functions. In the final stage, the results were vetted by the experts to assure it meet the best D&C practices. The novelty of the presented method lies in using advanced technologies such as Natural Language Processing, Data Mining and Machine learning to QC, mine, integrate and analyze large volumes of D&C data in a very short time, find the bottlenecks and optimize the future plan with evident benefits of improving D&C performance and capital efficiency from a global reservoir management perspective." @default.
- W2897403449 created "2018-10-26" @default.
- W2897403449 creator A5009237873 @default.
- W2897403449 creator A5044106125 @default.
- W2897403449 creator A5064213100 @default.
- W2897403449 date "2018-04-23" @default.
- W2897403449 modified "2023-10-01" @default.
- W2897403449 title "Machine Learning and Natural Language Processing for Automated Analysis of Drilling and Completion Data" @default.
- W2897403449 cites W2019352368 @default.
- W2897403449 cites W2038326972 @default.
- W2897403449 cites W2040659137 @default.
- W2897403449 cites W2051167307 @default.
- W2897403449 cites W2169818249 @default.
- W2897403449 cites W2334714649 @default.
- W2897403449 cites W2336805000 @default.
- W2897403449 cites W2514652902 @default.
- W2897403449 cites W2516521050 @default.
- W2897403449 cites W2604784612 @default.
- W2897403449 cites W2620683555 @default.
- W2897403449 cites W2755449951 @default.
- W2897403449 cites W4213009331 @default.
- W2897403449 doi "https://doi.org/10.2118/192280-ms" @default.
- W2897403449 hasPublicationYear "2018" @default.
- W2897403449 type Work @default.
- W2897403449 sameAs 2897403449 @default.
- W2897403449 citedByCount "18" @default.
- W2897403449 countsByYear W28974034492018 @default.
- W2897403449 countsByYear W28974034492019 @default.
- W2897403449 countsByYear W28974034492020 @default.
- W2897403449 countsByYear W28974034492021 @default.
- W2897403449 countsByYear W28974034492022 @default.
- W2897403449 countsByYear W28974034492023 @default.
- W2897403449 crossrefType "proceedings-article" @default.
- W2897403449 hasAuthorship W2897403449A5009237873 @default.
- W2897403449 hasAuthorship W2897403449A5044106125 @default.
- W2897403449 hasAuthorship W2897403449A5064213100 @default.
- W2897403449 hasConcept C111472728 @default.
- W2897403449 hasConcept C111919701 @default.
- W2897403449 hasConcept C119857082 @default.
- W2897403449 hasConcept C124101348 @default.
- W2897403449 hasConcept C127413603 @default.
- W2897403449 hasConcept C138885662 @default.
- W2897403449 hasConcept C154945302 @default.
- W2897403449 hasConcept C177264268 @default.
- W2897403449 hasConcept C199360897 @default.
- W2897403449 hasConcept C201995342 @default.
- W2897403449 hasConcept C25197100 @default.
- W2897403449 hasConcept C26517878 @default.
- W2897403449 hasConcept C2779530757 @default.
- W2897403449 hasConcept C2780451532 @default.
- W2897403449 hasConcept C38652104 @default.
- W2897403449 hasConcept C41008148 @default.
- W2897403449 hasConcept C68387754 @default.
- W2897403449 hasConcept C78519656 @default.
- W2897403449 hasConceptScore W2897403449C111472728 @default.
- W2897403449 hasConceptScore W2897403449C111919701 @default.
- W2897403449 hasConceptScore W2897403449C119857082 @default.
- W2897403449 hasConceptScore W2897403449C124101348 @default.
- W2897403449 hasConceptScore W2897403449C127413603 @default.
- W2897403449 hasConceptScore W2897403449C138885662 @default.
- W2897403449 hasConceptScore W2897403449C154945302 @default.
- W2897403449 hasConceptScore W2897403449C177264268 @default.
- W2897403449 hasConceptScore W2897403449C199360897 @default.
- W2897403449 hasConceptScore W2897403449C201995342 @default.
- W2897403449 hasConceptScore W2897403449C25197100 @default.
- W2897403449 hasConceptScore W2897403449C26517878 @default.
- W2897403449 hasConceptScore W2897403449C2779530757 @default.
- W2897403449 hasConceptScore W2897403449C2780451532 @default.
- W2897403449 hasConceptScore W2897403449C38652104 @default.
- W2897403449 hasConceptScore W2897403449C41008148 @default.
- W2897403449 hasConceptScore W2897403449C68387754 @default.
- W2897403449 hasConceptScore W2897403449C78519656 @default.
- W2897403449 hasLocation W28974034491 @default.
- W2897403449 hasOpenAccess W2897403449 @default.
- W2897403449 hasPrimaryLocation W28974034491 @default.
- W2897403449 hasRelatedWork W2329452785 @default.
- W2897403449 hasRelatedWork W2356380379 @default.
- W2897403449 hasRelatedWork W2377730064 @default.
- W2897403449 hasRelatedWork W2961085424 @default.
- W2897403449 hasRelatedWork W3046775127 @default.
- W2897403449 hasRelatedWork W4285260836 @default.
- W2897403449 hasRelatedWork W4286629047 @default.
- W2897403449 hasRelatedWork W4306321456 @default.
- W2897403449 hasRelatedWork W4306674287 @default.
- W2897403449 hasRelatedWork W4224009465 @default.
- W2897403449 isParatext "false" @default.
- W2897403449 isRetracted "false" @default.
- W2897403449 magId "2897403449" @default.
- W2897403449 workType "article" @default.