Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897417350> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2897417350 endingPage "374" @default.
- W2897417350 startingPage "369" @default.
- W2897417350 abstract "Abstract Spectroscopic techniques such as near-infrared spectroscopy have gained wide applications in the last few decades. As a result, various soft sensors have been developed to predict sample properties from the sample’s spectroscopic readings. Because the readings at different wavelengths are highly correlated, it has been shown that variable selection could significantly improve a soft sensor’s prediction performance and reduce the model complexity. Currently, almost all variable selection methods focus on how to select the variables (i.e., wavelengths or wavelength segments) that are strongly correlated with the dependent variable to improve the prediction performance. Although many successful applications have been reported, such variable selection methods do have their limitations, such as high sensitivity to the choice of training data, and poorer performance when testing on new samples. This is because the variables that are removed from model building may contain useful information about the sample property. To address this limitation, we propose a statistics pattern analysis (SPA) based method. Instead of selecting certain wavelengths or wavelength segments, the SPA-based method considers the whole spectrum which is divided into segments, and extracts different features over each spectrum segment to build the soft sensor. Two case studies are presented to demonstrate the performance of the SPA-based soft sensor and compared with a full partial least squares (PLS) model, and a synergy interval PLS (SiPLS) model." @default.
- W2897417350 created "2018-10-26" @default.
- W2897417350 creator A5018244700 @default.
- W2897417350 creator A5050980626 @default.
- W2897417350 creator A5072979181 @default.
- W2897417350 date "2018-01-01" @default.
- W2897417350 modified "2023-10-16" @default.
- W2897417350 title "A spectroscopic chemometric modeling approach based on statistics pattern analysis" @default.
- W2897417350 cites W1993759811 @default.
- W2897417350 cites W1999803257 @default.
- W2897417350 cites W2005051528 @default.
- W2897417350 cites W2007808016 @default.
- W2897417350 cites W2021754455 @default.
- W2897417350 cites W2055143789 @default.
- W2897417350 cites W2063255184 @default.
- W2897417350 cites W2064507803 @default.
- W2897417350 cites W2145159661 @default.
- W2897417350 cites W2148028862 @default.
- W2897417350 cites W2159959568 @default.
- W2897417350 cites W2327959768 @default.
- W2897417350 cites W2594255343 @default.
- W2897417350 cites W2747500034 @default.
- W2897417350 doi "https://doi.org/10.1016/j.ifacol.2018.09.328" @default.
- W2897417350 hasPublicationYear "2018" @default.
- W2897417350 type Work @default.
- W2897417350 sameAs 2897417350 @default.
- W2897417350 citedByCount "6" @default.
- W2897417350 countsByYear W28974173502019 @default.
- W2897417350 countsByYear W28974173502020 @default.
- W2897417350 countsByYear W28974173502022 @default.
- W2897417350 crossrefType "journal-article" @default.
- W2897417350 hasAuthorship W2897417350A5018244700 @default.
- W2897417350 hasAuthorship W2897417350A5050980626 @default.
- W2897417350 hasAuthorship W2897417350A5072979181 @default.
- W2897417350 hasBestOaLocation W28974173501 @default.
- W2897417350 hasConcept C105795698 @default.
- W2897417350 hasConcept C119857082 @default.
- W2897417350 hasConcept C151304367 @default.
- W2897417350 hasConcept C33923547 @default.
- W2897417350 hasConcept C41008148 @default.
- W2897417350 hasConceptScore W2897417350C105795698 @default.
- W2897417350 hasConceptScore W2897417350C119857082 @default.
- W2897417350 hasConceptScore W2897417350C151304367 @default.
- W2897417350 hasConceptScore W2897417350C33923547 @default.
- W2897417350 hasConceptScore W2897417350C41008148 @default.
- W2897417350 hasIssue "18" @default.
- W2897417350 hasLocation W28974173501 @default.
- W2897417350 hasOpenAccess W2897417350 @default.
- W2897417350 hasPrimaryLocation W28974173501 @default.
- W2897417350 hasRelatedWork W2046566088 @default.
- W2897417350 hasRelatedWork W2360864709 @default.
- W2897417350 hasRelatedWork W2514432122 @default.
- W2897417350 hasRelatedWork W2748952813 @default.
- W2897417350 hasRelatedWork W2793365604 @default.
- W2897417350 hasRelatedWork W2883718839 @default.
- W2897417350 hasRelatedWork W2899084033 @default.
- W2897417350 hasRelatedWork W4230279766 @default.
- W2897417350 hasRelatedWork W4234714318 @default.
- W2897417350 hasRelatedWork W206934866 @default.
- W2897417350 hasVolume "51" @default.
- W2897417350 isParatext "false" @default.
- W2897417350 isRetracted "false" @default.
- W2897417350 magId "2897417350" @default.
- W2897417350 workType "article" @default.