Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897418970> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2897418970 abstract "In healthcare, applying deep learning models to electronic health records (EHRs) has drawn considerable attention. EHR data consist of a sequence of medical visits, i.e. a multivariate time series of diagnosis, medications, physical examinations, lab tests, etc. This sequential nature makes EHR well matching the power of Recurrent Neural Network (RNN). In this paper, we propose Deep Diabetologist - using RNNs for EHR sequential data modelling, to provide the personalized hyperglycemia medication prediction for diabetic patients. Particularly, we develop a hierarchical RNN to capture the heterogeneous sequential information in the EHR data. Our experimental results demonstrate the improved performance, compared with a baseline classifier using logistic regression. Moreover, hierarchical RNN models outperform basic ones, providing deeper data insights for clinical decision support." @default.
- W2897418970 created "2018-10-26" @default.
- W2897418970 creator A5005064985 @default.
- W2897418970 creator A5015815806 @default.
- W2897418970 creator A5019160943 @default.
- W2897418970 creator A5041640315 @default.
- W2897418970 creator A5047213062 @default.
- W2897418970 creator A5052465353 @default.
- W2897418970 date "2018-10-17" @default.
- W2897418970 modified "2023-09-26" @default.
- W2897418970 title "Deep Diabetologist: Learning to Prescribe Hyperglycemia Medications with Hierarchical Recurrent Neural Networks." @default.
- W2897418970 cites W179875071 @default.
- W2897418970 cites W1950788856 @default.
- W2897418970 cites W2006207965 @default.
- W2897418970 cites W2042954874 @default.
- W2897418970 cites W2130266732 @default.
- W2897418970 cites W2418993857 @default.
- W2897418970 cites W2518582440 @default.
- W2897418970 cites W2950635152 @default.
- W2897418970 cites W2963078493 @default.
- W2897418970 cites W2985962305 @default.
- W2897418970 hasPublicationYear "2018" @default.
- W2897418970 type Work @default.
- W2897418970 sameAs 2897418970 @default.
- W2897418970 citedByCount "0" @default.
- W2897418970 crossrefType "posted-content" @default.
- W2897418970 hasAuthorship W2897418970A5005064985 @default.
- W2897418970 hasAuthorship W2897418970A5015815806 @default.
- W2897418970 hasAuthorship W2897418970A5019160943 @default.
- W2897418970 hasAuthorship W2897418970A5041640315 @default.
- W2897418970 hasAuthorship W2897418970A5047213062 @default.
- W2897418970 hasAuthorship W2897418970A5052465353 @default.
- W2897418970 hasConcept C108583219 @default.
- W2897418970 hasConcept C119857082 @default.
- W2897418970 hasConcept C124101348 @default.
- W2897418970 hasConcept C142724271 @default.
- W2897418970 hasConcept C147168706 @default.
- W2897418970 hasConcept C151956035 @default.
- W2897418970 hasConcept C154945302 @default.
- W2897418970 hasConcept C160735492 @default.
- W2897418970 hasConcept C162324750 @default.
- W2897418970 hasConcept C165064840 @default.
- W2897418970 hasConcept C3019952477 @default.
- W2897418970 hasConcept C40506919 @default.
- W2897418970 hasConcept C41008148 @default.
- W2897418970 hasConcept C50522688 @default.
- W2897418970 hasConcept C50644808 @default.
- W2897418970 hasConcept C71924100 @default.
- W2897418970 hasConcept C95623464 @default.
- W2897418970 hasConceptScore W2897418970C108583219 @default.
- W2897418970 hasConceptScore W2897418970C119857082 @default.
- W2897418970 hasConceptScore W2897418970C124101348 @default.
- W2897418970 hasConceptScore W2897418970C142724271 @default.
- W2897418970 hasConceptScore W2897418970C147168706 @default.
- W2897418970 hasConceptScore W2897418970C151956035 @default.
- W2897418970 hasConceptScore W2897418970C154945302 @default.
- W2897418970 hasConceptScore W2897418970C160735492 @default.
- W2897418970 hasConceptScore W2897418970C162324750 @default.
- W2897418970 hasConceptScore W2897418970C165064840 @default.
- W2897418970 hasConceptScore W2897418970C3019952477 @default.
- W2897418970 hasConceptScore W2897418970C40506919 @default.
- W2897418970 hasConceptScore W2897418970C41008148 @default.
- W2897418970 hasConceptScore W2897418970C50522688 @default.
- W2897418970 hasConceptScore W2897418970C50644808 @default.
- W2897418970 hasConceptScore W2897418970C71924100 @default.
- W2897418970 hasConceptScore W2897418970C95623464 @default.
- W2897418970 hasLocation W28974189701 @default.
- W2897418970 hasOpenAccess W2897418970 @default.
- W2897418970 hasPrimaryLocation W28974189701 @default.
- W2897418970 hasRelatedWork W2786983438 @default.
- W2897418970 hasRelatedWork W2802736684 @default.
- W2897418970 hasRelatedWork W2806759108 @default.
- W2897418970 hasRelatedWork W2808379857 @default.
- W2897418970 hasRelatedWork W2859678909 @default.
- W2897418970 hasRelatedWork W2890758016 @default.
- W2897418970 hasRelatedWork W2893071716 @default.
- W2897418970 hasRelatedWork W2944774301 @default.
- W2897418970 hasRelatedWork W2956513391 @default.
- W2897418970 hasRelatedWork W2990899307 @default.
- W2897418970 hasRelatedWork W3003504112 @default.
- W2897418970 hasRelatedWork W3081364721 @default.
- W2897418970 hasRelatedWork W3094794737 @default.
- W2897418970 hasRelatedWork W3099136959 @default.
- W2897418970 hasRelatedWork W3133650345 @default.
- W2897418970 hasRelatedWork W3195657531 @default.
- W2897418970 hasRelatedWork W3196962552 @default.
- W2897418970 hasRelatedWork W3197452085 @default.
- W2897418970 hasRelatedWork W3202070916 @default.
- W2897418970 hasRelatedWork W3167258335 @default.
- W2897418970 isParatext "false" @default.
- W2897418970 isRetracted "false" @default.
- W2897418970 magId "2897418970" @default.
- W2897418970 workType "article" @default.