Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897430433> ?p ?o ?g. }
- W2897430433 endingPage "279" @default.
- W2897430433 startingPage "271" @default.
- W2897430433 abstract "ABSTRACT Very few studies have been devoted to understanding the digital terrain model (DTM) creation for Amazon forests. DTM has a special and important role when airborne laser scanning is used to estimate vegetation biomass. We examined the influence of pulse density, spatial resolution, filter algorithms, vegetation density and slope on the DTM quality. Three Amazonian forested areas were surveyed with airborne laser scanning, and each original point cloud was reduced targeting to 20, 15, 10, 8, 6, 4, 2, 1, 0.75, 0.5 and 0.25 pulses per square meter based on a random resampling process. The DTM from resampled clouds was compared with the reference DTM produced from the original LiDAR data by calculating the deviation pixel by pixel and summarizing it through the root mean square error (RMSE). The DTM from resampled clouds were also evaluated considering the level of agreement with the reference DTM. Our study showed a clear trade-off between the return density and the horizontal resolution. Higher forest canopy density demanded higher return density or lower DTM resolution." @default.
- W2897430433 created "2018-10-26" @default.
- W2897430433 creator A5002453166 @default.
- W2897430433 creator A5015140700 @default.
- W2897430433 creator A5020419497 @default.
- W2897430433 creator A5023673668 @default.
- W2897430433 creator A5026830749 @default.
- W2897430433 creator A5036251878 @default.
- W2897430433 creator A5049390277 @default.
- W2897430433 date "2018-12-01" @default.
- W2897430433 modified "2023-10-01" @default.
- W2897430433 title "Airborne laser scanning for terrain modeling in the Amazon forest" @default.
- W2897430433 cites W1556779599 @default.
- W2897430433 cites W1600914513 @default.
- W2897430433 cites W1966946865 @default.
- W2897430433 cites W1970685828 @default.
- W2897430433 cites W1977428739 @default.
- W2897430433 cites W2009214675 @default.
- W2897430433 cites W2013206258 @default.
- W2897430433 cites W2014091167 @default.
- W2897430433 cites W2026536444 @default.
- W2897430433 cites W2030359906 @default.
- W2897430433 cites W2035601141 @default.
- W2897430433 cites W2048126105 @default.
- W2897430433 cites W2055314812 @default.
- W2897430433 cites W2064793532 @default.
- W2897430433 cites W2068845501 @default.
- W2897430433 cites W2081319820 @default.
- W2897430433 cites W2094434264 @default.
- W2897430433 cites W2097631297 @default.
- W2897430433 cites W2098630016 @default.
- W2897430433 cites W2100565143 @default.
- W2897430433 cites W2104998606 @default.
- W2897430433 cites W2110221217 @default.
- W2897430433 cites W2114750096 @default.
- W2897430433 cites W2124837560 @default.
- W2897430433 cites W2133237420 @default.
- W2897430433 cites W2137902219 @default.
- W2897430433 cites W2155260804 @default.
- W2897430433 cites W2162298841 @default.
- W2897430433 cites W2163712690 @default.
- W2897430433 cites W2325115425 @default.
- W2897430433 cites W2602986670 @default.
- W2897430433 doi "https://doi.org/10.1590/1809-4392201800132" @default.
- W2897430433 hasPublicationYear "2018" @default.
- W2897430433 type Work @default.
- W2897430433 sameAs 2897430433 @default.
- W2897430433 citedByCount "7" @default.
- W2897430433 countsByYear W28974304332019 @default.
- W2897430433 countsByYear W28974304332020 @default.
- W2897430433 countsByYear W28974304332021 @default.
- W2897430433 countsByYear W28974304332022 @default.
- W2897430433 crossrefType "journal-article" @default.
- W2897430433 hasAuthorship W2897430433A5002453166 @default.
- W2897430433 hasAuthorship W2897430433A5015140700 @default.
- W2897430433 hasAuthorship W2897430433A5020419497 @default.
- W2897430433 hasAuthorship W2897430433A5023673668 @default.
- W2897430433 hasAuthorship W2897430433A5026830749 @default.
- W2897430433 hasAuthorship W2897430433A5036251878 @default.
- W2897430433 hasAuthorship W2897430433A5049390277 @default.
- W2897430433 hasBestOaLocation W28974304331 @default.
- W2897430433 hasConcept C120665830 @default.
- W2897430433 hasConcept C121332964 @default.
- W2897430433 hasConcept C131979681 @default.
- W2897430433 hasConcept C141349535 @default.
- W2897430433 hasConcept C142724271 @default.
- W2897430433 hasConcept C160633673 @default.
- W2897430433 hasConcept C161840515 @default.
- W2897430433 hasConcept C181843262 @default.
- W2897430433 hasConcept C18903297 @default.
- W2897430433 hasConcept C205649164 @default.
- W2897430433 hasConcept C2776133958 @default.
- W2897430433 hasConcept C31972630 @default.
- W2897430433 hasConcept C39432304 @default.
- W2897430433 hasConcept C41008148 @default.
- W2897430433 hasConcept C51399673 @default.
- W2897430433 hasConcept C520434653 @default.
- W2897430433 hasConcept C535291247 @default.
- W2897430433 hasConcept C58640448 @default.
- W2897430433 hasConcept C62649853 @default.
- W2897430433 hasConcept C71924100 @default.
- W2897430433 hasConcept C86803240 @default.
- W2897430433 hasConceptScore W2897430433C120665830 @default.
- W2897430433 hasConceptScore W2897430433C121332964 @default.
- W2897430433 hasConceptScore W2897430433C131979681 @default.
- W2897430433 hasConceptScore W2897430433C141349535 @default.
- W2897430433 hasConceptScore W2897430433C142724271 @default.
- W2897430433 hasConceptScore W2897430433C160633673 @default.
- W2897430433 hasConceptScore W2897430433C161840515 @default.
- W2897430433 hasConceptScore W2897430433C181843262 @default.
- W2897430433 hasConceptScore W2897430433C18903297 @default.
- W2897430433 hasConceptScore W2897430433C205649164 @default.
- W2897430433 hasConceptScore W2897430433C2776133958 @default.
- W2897430433 hasConceptScore W2897430433C31972630 @default.
- W2897430433 hasConceptScore W2897430433C39432304 @default.
- W2897430433 hasConceptScore W2897430433C41008148 @default.
- W2897430433 hasConceptScore W2897430433C51399673 @default.
- W2897430433 hasConceptScore W2897430433C520434653 @default.