Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897433657> ?p ?o ?g. }
- W2897433657 endingPage "103" @default.
- W2897433657 startingPage "96" @default.
- W2897433657 abstract "Identifying tumor metastasis signatures from gene expression data at the whole genome level remains an arduous challenge, particularly so when the number of genes is huge and the number of experimental samples is small. We focus on the prediction of the epithelial-mesenchymal transition (EMT), which is an underlying mechanism of tumor metastasis, here, rather than on tumor metastasis itself, to avoid confounding effects of uncertainties derived from various factors. We apply an extended LASSO model, L1/2-regularization model, as a feature selector, to identify significant RNA-binding proteins (RBPs) that contribute to regulating the EMT. We find that the L1/2-regularization model significantly outperforms LASSO in the EMT regulation problem. Furthermore, remarkable improvement in L1/2-regularization model classification performance can be achieved by incorporating extra information, specifically correlation values. We demonstrate that the L1/2-regularization model is applicable for identifying significant RBPs in biological research. Identified RBPs will facilitate study of the underlying mechanisms of the EMT." @default.
- W2897433657 created "2018-10-26" @default.
- W2897433657 creator A5010561682 @default.
- W2897433657 creator A5055139178 @default.
- W2897433657 creator A5079234443 @default.
- W2897433657 creator A5086061723 @default.
- W2897433657 date "2019-04-01" @default.
- W2897433657 modified "2023-10-03" @default.
- W2897433657 title "On predicting epithelial mesenchymal transition by integrating RNA-binding proteins and correlation data via L1/2-regularization method" @default.
- W2897433657 cites W136765890 @default.
- W2897433657 cites W1964246208 @default.
- W2897433657 cites W1985888795 @default.
- W2897433657 cites W1997535872 @default.
- W2897433657 cites W2011690214 @default.
- W2897433657 cites W2019711853 @default.
- W2897433657 cites W2021173510 @default.
- W2897433657 cites W2022744039 @default.
- W2897433657 cites W2025666718 @default.
- W2897433657 cites W2028781966 @default.
- W2897433657 cites W2052427812 @default.
- W2897433657 cites W2056201402 @default.
- W2897433657 cites W2063011414 @default.
- W2897433657 cites W2065797952 @default.
- W2897433657 cites W2073078086 @default.
- W2897433657 cites W2096911942 @default.
- W2897433657 cites W2106555403 @default.
- W2897433657 cites W2111501574 @default.
- W2897433657 cites W2115157373 @default.
- W2897433657 cites W2115706991 @default.
- W2897433657 cites W2119862467 @default.
- W2897433657 cites W2127994824 @default.
- W2897433657 cites W2133585870 @default.
- W2897433657 cites W2133735831 @default.
- W2897433657 cites W2134785517 @default.
- W2897433657 cites W2140551998 @default.
- W2897433657 cites W2154941270 @default.
- W2897433657 cites W2158402998 @default.
- W2897433657 cites W2160212814 @default.
- W2897433657 cites W2163296862 @default.
- W2897433657 cites W2177744475 @default.
- W2897433657 cites W2314109998 @default.
- W2897433657 cites W2399141972 @default.
- W2897433657 cites W2604416127 @default.
- W2897433657 cites W2756978353 @default.
- W2897433657 cites W2911964244 @default.
- W2897433657 cites W4211233744 @default.
- W2897433657 doi "https://doi.org/10.1016/j.artmed.2018.09.005" @default.
- W2897433657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30352711" @default.
- W2897433657 hasPublicationYear "2019" @default.
- W2897433657 type Work @default.
- W2897433657 sameAs 2897433657 @default.
- W2897433657 citedByCount "6" @default.
- W2897433657 countsByYear W28974336572021 @default.
- W2897433657 countsByYear W28974336572023 @default.
- W2897433657 crossrefType "journal-article" @default.
- W2897433657 hasAuthorship W2897433657A5010561682 @default.
- W2897433657 hasAuthorship W2897433657A5055139178 @default.
- W2897433657 hasAuthorship W2897433657A5079234443 @default.
- W2897433657 hasAuthorship W2897433657A5086061723 @default.
- W2897433657 hasConcept C104317684 @default.
- W2897433657 hasConcept C117220453 @default.
- W2897433657 hasConcept C119857082 @default.
- W2897433657 hasConcept C121608353 @default.
- W2897433657 hasConcept C136764020 @default.
- W2897433657 hasConcept C154945302 @default.
- W2897433657 hasConcept C2524010 @default.
- W2897433657 hasConcept C2776135515 @default.
- W2897433657 hasConcept C2779013556 @default.
- W2897433657 hasConcept C33923547 @default.
- W2897433657 hasConcept C37616216 @default.
- W2897433657 hasConcept C41008148 @default.
- W2897433657 hasConcept C41282012 @default.
- W2897433657 hasConcept C54355233 @default.
- W2897433657 hasConcept C67705224 @default.
- W2897433657 hasConcept C70721500 @default.
- W2897433657 hasConcept C76419328 @default.
- W2897433657 hasConcept C86803240 @default.
- W2897433657 hasConceptScore W2897433657C104317684 @default.
- W2897433657 hasConceptScore W2897433657C117220453 @default.
- W2897433657 hasConceptScore W2897433657C119857082 @default.
- W2897433657 hasConceptScore W2897433657C121608353 @default.
- W2897433657 hasConceptScore W2897433657C136764020 @default.
- W2897433657 hasConceptScore W2897433657C154945302 @default.
- W2897433657 hasConceptScore W2897433657C2524010 @default.
- W2897433657 hasConceptScore W2897433657C2776135515 @default.
- W2897433657 hasConceptScore W2897433657C2779013556 @default.
- W2897433657 hasConceptScore W2897433657C33923547 @default.
- W2897433657 hasConceptScore W2897433657C37616216 @default.
- W2897433657 hasConceptScore W2897433657C41008148 @default.
- W2897433657 hasConceptScore W2897433657C41282012 @default.
- W2897433657 hasConceptScore W2897433657C54355233 @default.
- W2897433657 hasConceptScore W2897433657C67705224 @default.
- W2897433657 hasConceptScore W2897433657C70721500 @default.
- W2897433657 hasConceptScore W2897433657C76419328 @default.
- W2897433657 hasConceptScore W2897433657C86803240 @default.
- W2897433657 hasFunder F4320321001 @default.
- W2897433657 hasLocation W28974336571 @default.
- W2897433657 hasLocation W28974336572 @default.