Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897440704> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2897440704 abstract "Abstract Prescribing the right drug with the right dose is a central tenet of precision medicine. We examined the use of patients’ prior Electronic Health Records to predict a reduction in drug dosage. We focus on drugs that interact with the P450 enzyme family, because their dosage is known to be sensitive and variable. We extracted diagnostic codes, conditions reported in clinical notes, and laboratory orders from Stanford’s clinical data warehouse to construct cohorts of patients that either did or did not need a dose change. After feature selection, we trained models to predict the patients who will (or will not) require a dose change after being prescribed one of 34 drugs across 23 drug classes. Overall, we can predict (AUC ≥ 0.70–0.95) a dose reduction for 23 drugs and 22 drug classes. Several of these drugs are associated with clinical guidelines that recommend dose reduction exclusively in the case of adverse reaction. For these cases, a reduction in dosage may be considered as a surrogate for an adverse reaction, which our system could indirectly help predict and prevent. Our study illustrates the role machine learning may take in providing guidance in setting the starting dose for drugs associated with response variability." @default.
- W2897440704 created "2018-10-26" @default.
- W2897440704 creator A5010871542 @default.
- W2897440704 creator A5020842231 @default.
- W2897440704 creator A5041175834 @default.
- W2897440704 creator A5044836472 @default.
- W2897440704 creator A5082641159 @default.
- W2897440704 creator A5087418731 @default.
- W2897440704 date "2018-10-22" @default.
- W2897440704 modified "2023-10-07" @default.
- W2897440704 title "Predicting the need for a reduced drug dose, at first prescription" @default.
- W2897440704 cites W1512404644 @default.
- W2897440704 cites W1608678137 @default.
- W2897440704 cites W1895978999 @default.
- W2897440704 cites W1983141380 @default.
- W2897440704 cites W2004655580 @default.
- W2897440704 cites W2004910511 @default.
- W2897440704 cites W2040555718 @default.
- W2897440704 cites W2043241855 @default.
- W2897440704 cites W2060706173 @default.
- W2897440704 cites W2092860916 @default.
- W2897440704 cites W2102017524 @default.
- W2897440704 cites W2106252902 @default.
- W2897440704 cites W2115967402 @default.
- W2897440704 cites W2119002393 @default.
- W2897440704 cites W2120024428 @default.
- W2897440704 cites W2135102212 @default.
- W2897440704 cites W2135230352 @default.
- W2897440704 cites W2148012276 @default.
- W2897440704 cites W2156223900 @default.
- W2897440704 cites W2157272674 @default.
- W2897440704 cites W2404901863 @default.
- W2897440704 cites W2538754057 @default.
- W2897440704 cites W2587355458 @default.
- W2897440704 cites W2770336014 @default.
- W2897440704 cites W2792968757 @default.
- W2897440704 cites W2793349513 @default.
- W2897440704 cites W2911964244 @default.
- W2897440704 cites W402335930 @default.
- W2897440704 doi "https://doi.org/10.1038/s41598-018-33980-0" @default.
- W2897440704 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6197198" @default.
- W2897440704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30349060" @default.
- W2897440704 hasPublicationYear "2018" @default.
- W2897440704 type Work @default.
- W2897440704 sameAs 2897440704 @default.
- W2897440704 citedByCount "5" @default.
- W2897440704 countsByYear W28974407042019 @default.
- W2897440704 countsByYear W28974407042021 @default.
- W2897440704 countsByYear W28974407042022 @default.
- W2897440704 countsByYear W28974407042023 @default.
- W2897440704 crossrefType "journal-article" @default.
- W2897440704 hasAuthorship W2897440704A5010871542 @default.
- W2897440704 hasAuthorship W2897440704A5020842231 @default.
- W2897440704 hasAuthorship W2897440704A5041175834 @default.
- W2897440704 hasAuthorship W2897440704A5044836472 @default.
- W2897440704 hasAuthorship W2897440704A5082641159 @default.
- W2897440704 hasAuthorship W2897440704A5087418731 @default.
- W2897440704 hasBestOaLocation W28974407041 @default.
- W2897440704 hasConcept C177713679 @default.
- W2897440704 hasConcept C197934379 @default.
- W2897440704 hasConcept C2426938 @default.
- W2897440704 hasConcept C2780035454 @default.
- W2897440704 hasConcept C71924100 @default.
- W2897440704 hasConcept C98274493 @default.
- W2897440704 hasConceptScore W2897440704C177713679 @default.
- W2897440704 hasConceptScore W2897440704C197934379 @default.
- W2897440704 hasConceptScore W2897440704C2426938 @default.
- W2897440704 hasConceptScore W2897440704C2780035454 @default.
- W2897440704 hasConceptScore W2897440704C71924100 @default.
- W2897440704 hasConceptScore W2897440704C98274493 @default.
- W2897440704 hasIssue "1" @default.
- W2897440704 hasLocation W28974407041 @default.
- W2897440704 hasLocation W28974407042 @default.
- W2897440704 hasLocation W28974407043 @default.
- W2897440704 hasLocation W28974407044 @default.
- W2897440704 hasLocation W28974407045 @default.
- W2897440704 hasLocation W28974407046 @default.
- W2897440704 hasLocation W28974407047 @default.
- W2897440704 hasOpenAccess W2897440704 @default.
- W2897440704 hasPrimaryLocation W28974407041 @default.
- W2897440704 hasRelatedWork W141142757 @default.
- W2897440704 hasRelatedWork W2092246656 @default.
- W2897440704 hasRelatedWork W2165728724 @default.
- W2897440704 hasRelatedWork W2384575053 @default.
- W2897440704 hasRelatedWork W2409854439 @default.
- W2897440704 hasRelatedWork W2471354286 @default.
- W2897440704 hasRelatedWork W2474278185 @default.
- W2897440704 hasRelatedWork W2741389566 @default.
- W2897440704 hasRelatedWork W2951176593 @default.
- W2897440704 hasRelatedWork W3035021783 @default.
- W2897440704 hasVolume "8" @default.
- W2897440704 isParatext "false" @default.
- W2897440704 isRetracted "false" @default.
- W2897440704 magId "2897440704" @default.
- W2897440704 workType "article" @default.