Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897460995> ?p ?o ?g. }
- W2897460995 endingPage "1151" @default.
- W2897460995 startingPage "1142" @default.
- W2897460995 abstract "With the wide spreading of mobile and Internet of Things (IoT) devices, music cognition as a meaningful task for music promotion has attracted a lot of attention around the world. How to automatically generate music score is an important part in music cognition, which acts as an important carrier so as to disposing huge quantity of music data in IoT networks or Internet. For the reason that the computers lack of the domain knowledge and cognitive ability, it is hard for computers to recognize the melody of music or write score while listening to the music. Therefore, a music cognition system is introduced to cognate music and automatically write score based on machine learning methods. First, considering large-scale data processing is needed by machine learning algorithms and a number of music devices are involved in the cognition system through Internet, fog computing is adopted in the proposed architecture to efficiently allocate computing resources. Then, the system can collect, preprocess, and store raw music data on the fringe nodes. Meanwhile, these data will be transmitted from fog nodes to cloud servers to form music databases. Then, machine learning algorithms, such as hidden Markov model and Gaussian mixture model, are performed in cloud servers to recognize music melody. Finally, a case study of music score generation demonstrates the proposed system. It is shown that the method provides an effective support to generate music score, and also proposed a promising way for the research and application of music cognition." @default.
- W2897460995 created "2018-10-26" @default.
- W2897460995 creator A5007499825 @default.
- W2897460995 creator A5009100021 @default.
- W2897460995 creator A5022583120 @default.
- W2897460995 creator A5046321322 @default.
- W2897460995 creator A5078222115 @default.
- W2897460995 date "2018-12-01" @default.
- W2897460995 modified "2023-10-06" @default.
- W2897460995 title "Fog Computing Approach for Music Cognition System Based on Machine Learning Algorithm" @default.
- W2897460995 cites W1496257820 @default.
- W2897460995 cites W1957654261 @default.
- W2897460995 cites W1979297146 @default.
- W2897460995 cites W1981706894 @default.
- W2897460995 cites W1995003300 @default.
- W2897460995 cites W1996746465 @default.
- W2897460995 cites W1997539057 @default.
- W2897460995 cites W2026892459 @default.
- W2897460995 cites W2030511115 @default.
- W2897460995 cites W2038194220 @default.
- W2897460995 cites W2065261386 @default.
- W2897460995 cites W2083533476 @default.
- W2897460995 cites W2103727079 @default.
- W2897460995 cites W2104112890 @default.
- W2897460995 cites W2114623221 @default.
- W2897460995 cites W2126410803 @default.
- W2897460995 cites W2128835147 @default.
- W2897460995 cites W2131095492 @default.
- W2897460995 cites W2166706387 @default.
- W2897460995 cites W2279830928 @default.
- W2897460995 cites W2338037132 @default.
- W2897460995 cites W2532521045 @default.
- W2897460995 cites W2572026586 @default.
- W2897460995 cites W2732694923 @default.
- W2897460995 cites W1968619709 @default.
- W2897460995 doi "https://doi.org/10.1109/tcss.2018.2871694" @default.
- W2897460995 hasPublicationYear "2018" @default.
- W2897460995 type Work @default.
- W2897460995 sameAs 2897460995 @default.
- W2897460995 citedByCount "29" @default.
- W2897460995 countsByYear W28974609952019 @default.
- W2897460995 countsByYear W28974609952020 @default.
- W2897460995 countsByYear W28974609952021 @default.
- W2897460995 countsByYear W28974609952022 @default.
- W2897460995 countsByYear W28974609952023 @default.
- W2897460995 crossrefType "journal-article" @default.
- W2897460995 hasAuthorship W2897460995A5007499825 @default.
- W2897460995 hasAuthorship W2897460995A5009100021 @default.
- W2897460995 hasAuthorship W2897460995A5022583120 @default.
- W2897460995 hasAuthorship W2897460995A5046321322 @default.
- W2897460995 hasAuthorship W2897460995A5078222115 @default.
- W2897460995 hasConcept C110875604 @default.
- W2897460995 hasConcept C111919701 @default.
- W2897460995 hasConcept C11413529 @default.
- W2897460995 hasConcept C119857082 @default.
- W2897460995 hasConcept C136764020 @default.
- W2897460995 hasConcept C154945302 @default.
- W2897460995 hasConcept C169760540 @default.
- W2897460995 hasConcept C169900460 @default.
- W2897460995 hasConcept C41008148 @default.
- W2897460995 hasConcept C49774154 @default.
- W2897460995 hasConcept C79974875 @default.
- W2897460995 hasConcept C86803240 @default.
- W2897460995 hasConcept C92298750 @default.
- W2897460995 hasConcept C93996380 @default.
- W2897460995 hasConceptScore W2897460995C110875604 @default.
- W2897460995 hasConceptScore W2897460995C111919701 @default.
- W2897460995 hasConceptScore W2897460995C11413529 @default.
- W2897460995 hasConceptScore W2897460995C119857082 @default.
- W2897460995 hasConceptScore W2897460995C136764020 @default.
- W2897460995 hasConceptScore W2897460995C154945302 @default.
- W2897460995 hasConceptScore W2897460995C169760540 @default.
- W2897460995 hasConceptScore W2897460995C169900460 @default.
- W2897460995 hasConceptScore W2897460995C41008148 @default.
- W2897460995 hasConceptScore W2897460995C49774154 @default.
- W2897460995 hasConceptScore W2897460995C79974875 @default.
- W2897460995 hasConceptScore W2897460995C86803240 @default.
- W2897460995 hasConceptScore W2897460995C92298750 @default.
- W2897460995 hasConceptScore W2897460995C93996380 @default.
- W2897460995 hasFunder F4320321001 @default.
- W2897460995 hasIssue "4" @default.
- W2897460995 hasLocation W28974609951 @default.
- W2897460995 hasOpenAccess W2897460995 @default.
- W2897460995 hasPrimaryLocation W28974609951 @default.
- W2897460995 hasRelatedWork W1749786217 @default.
- W2897460995 hasRelatedWork W2355862304 @default.
- W2897460995 hasRelatedWork W2383532021 @default.
- W2897460995 hasRelatedWork W2592125781 @default.
- W2897460995 hasRelatedWork W2893967483 @default.
- W2897460995 hasRelatedWork W2909650725 @default.
- W2897460995 hasRelatedWork W2961085424 @default.
- W2897460995 hasRelatedWork W2981693706 @default.
- W2897460995 hasRelatedWork W3006227554 @default.
- W2897460995 hasRelatedWork W2269917415 @default.
- W2897460995 hasVolume "5" @default.
- W2897460995 isParatext "false" @default.
- W2897460995 isRetracted "false" @default.
- W2897460995 magId "2897460995" @default.