Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897465214> ?p ?o ?g. }
- W2897465214 abstract "Rapid advances in Artificial Intelligence and Machine Learning are creating products and services with the potential not only to change the environment in which actuaries operate, but also to provide new opportunities within actuarial science. These advances are based on a modern approach to designing, fitting and applying neural networks, generally referred to as “Deep Learning”. This paper investigates how actuarial science may adapt and evolve in the coming years to incorporate these new techniques and methodologies. After providing some background on machine learning and deep learning, and providing a heuristic for where actuaries might benefit from applying these techniques, the paper surveys emerging applications of AI in actuarial science, with examples from mortality modelling, claims reserving, non-life pricing and telematics. For some of the examples, code has been provided on GitHub so that the interested reader can experiment with these techniques for themselves. The paper concludes with an outlook on the potential for actuaries to integrate deep learning into their activities." @default.
- W2897465214 created "2018-10-26" @default.
- W2897465214 creator A5048936137 @default.
- W2897465214 date "2018-01-01" @default.
- W2897465214 modified "2023-10-16" @default.
- W2897465214 title "AI in Actuarial Science" @default.
- W2897465214 cites W1420559553 @default.
- W2897465214 cites W1498436455 @default.
- W2897465214 cites W1969498530 @default.
- W2897465214 cites W1971129545 @default.
- W2897465214 cites W1973499930 @default.
- W2897465214 cites W1988768198 @default.
- W2897465214 cites W1988790447 @default.
- W2897465214 cites W1990517717 @default.
- W2897465214 cites W1993693796 @default.
- W2897465214 cites W2040870580 @default.
- W2897465214 cites W2050044277 @default.
- W2897465214 cites W2064675550 @default.
- W2897465214 cites W2084341220 @default.
- W2897465214 cites W2097117768 @default.
- W2897465214 cites W2100495367 @default.
- W2897465214 cites W2112796928 @default.
- W2897465214 cites W2120297822 @default.
- W2897465214 cites W2122825543 @default.
- W2897465214 cites W2134548066 @default.
- W2897465214 cites W2135046866 @default.
- W2897465214 cites W2136188204 @default.
- W2897465214 cites W2136922672 @default.
- W2897465214 cites W2143612262 @default.
- W2897465214 cites W2143908786 @default.
- W2897465214 cites W2158863190 @default.
- W2897465214 cites W2163922914 @default.
- W2897465214 cites W2164598857 @default.
- W2897465214 cites W2168229653 @default.
- W2897465214 cites W2301896715 @default.
- W2897465214 cites W2487770199 @default.
- W2897465214 cites W2491980219 @default.
- W2897465214 cites W2507981415 @default.
- W2897465214 cites W2519010223 @default.
- W2897465214 cites W2527761280 @default.
- W2897465214 cites W2563902504 @default.
- W2897465214 cites W2573444250 @default.
- W2897465214 cites W2578339457 @default.
- W2897465214 cites W2582016141 @default.
- W2897465214 cites W2593566717 @default.
- W2897465214 cites W2610886376 @default.
- W2897465214 cites W2612676342 @default.
- W2897465214 cites W2618530766 @default.
- W2897465214 cites W2758018149 @default.
- W2897465214 cites W2782891976 @default.
- W2897465214 cites W2783256039 @default.
- W2897465214 cites W2787894218 @default.
- W2897465214 cites W2792423701 @default.
- W2897465214 cites W2792440251 @default.
- W2897465214 cites W2794778778 @default.
- W2897465214 cites W2795288700 @default.
- W2897465214 cites W2807416214 @default.
- W2897465214 cites W2898144482 @default.
- W2897465214 cites W2919115771 @default.
- W2897465214 cites W2963042536 @default.
- W2897465214 cites W3121452939 @default.
- W2897465214 cites W3123740547 @default.
- W2897465214 cites W3124322175 @default.
- W2897465214 cites W3124455136 @default.
- W2897465214 cites W3124586986 @default.
- W2897465214 cites W3125269895 @default.
- W2897465214 cites W3126010459 @default.
- W2897465214 cites W4210984920 @default.
- W2897465214 cites W4231109964 @default.
- W2897465214 cites W4232473611 @default.
- W2897465214 cites W4233909451 @default.
- W2897465214 cites W4235893153 @default.
- W2897465214 cites W4240665923 @default.
- W2897465214 cites W4250533120 @default.
- W2897465214 cites W4254687493 @default.
- W2897465214 cites W429766147 @default.
- W2897465214 cites W569258332 @default.
- W2897465214 doi "https://doi.org/10.2139/ssrn.3218082" @default.
- W2897465214 hasPublicationYear "2018" @default.
- W2897465214 type Work @default.
- W2897465214 sameAs 2897465214 @default.
- W2897465214 citedByCount "16" @default.
- W2897465214 countsByYear W28974652142018 @default.
- W2897465214 countsByYear W28974652142019 @default.
- W2897465214 countsByYear W28974652142020 @default.
- W2897465214 countsByYear W28974652142021 @default.
- W2897465214 countsByYear W28974652142022 @default.
- W2897465214 countsByYear W28974652142023 @default.
- W2897465214 crossrefType "journal-article" @default.
- W2897465214 hasAuthorship W2897465214A5048936137 @default.
- W2897465214 hasConcept C138885662 @default.
- W2897465214 hasConcept C15744967 @default.
- W2897465214 hasConcept C162118730 @default.
- W2897465214 hasConcept C162324750 @default.
- W2897465214 hasConceptScore W2897465214C138885662 @default.
- W2897465214 hasConceptScore W2897465214C15744967 @default.
- W2897465214 hasConceptScore W2897465214C162118730 @default.
- W2897465214 hasConceptScore W2897465214C162324750 @default.
- W2897465214 hasLocation W28974652141 @default.
- W2897465214 hasOpenAccess W2897465214 @default.