Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897466146> ?p ?o ?g. }
- W2897466146 endingPage "5596" @default.
- W2897466146 startingPage "5586" @default.
- W2897466146 abstract "Purpose Ionization chambers are the detectors of choice for photon beam profile scanning. However, they introduce significant volume averaging effect (VAE) that can artificially broaden the penumbra width by 2–3 mm. The purpose of this study was to examine the feasibility of photon beam profile deconvolution (the elimination of VAE from ionization chamber‐measured beam profiles) using a three‐layer feedforward neural network. Methods Transverse beam profiles of photon fields between 2 × 2 and 10 × 10 cm 2 were collected with both a CC13 ionization chamber and an EDGE diode detector on an Elekta Versa HD accelerator. These profiles were divided into three datasets (training, validation and test) to train and test a three‐layer feedforward neural network. A sliding window was used to extract input data from the CC13‐measured profiles. The neural network produced the deconvolved value at the center of the sliding window. The full deconvolved profile was obtained after the sliding window was moved over the measured profile from end to end. The EDGE‐measured beam profiles were used as reference for the training, validation, and test. The number of input neurons, which equals the sliding window width, and the number of hidden neurons were optimized with a parametric sweeping method. A total of 135 neural networks were fully trained with the Levenberg–Marquardt backpropagation algorithm. The one with the best overall performance on the training and validation dataset was selected to test its generalization ability on the test dataset. The agreement between the neural network‐deconvolved profiles and the EDGE‐measured profiles was evaluated with two metrics: mean squared error (MSE) and penumbra width difference (PWD). Results Based on the two‐dimensional MSE plots, the optimal combination of sliding window width of 15 and 5 hidden neurons was selected for the final neural network. Excellent agreement was achieved between the neural network‐deconvolved profiles and the reference profiles in all three datasets. After deconvolution, the mean PWD reduced from 2.43 ± 0.26, 2.44 ± 0.36, and 2.46 ± 0.29 mm to 0.15 ± 0.15, 0.04 ± 0.03, and 0.14 ± 0.09 mm for the training, validation, and test dataset, respectively. Conclusions We demonstrated the feasibility of photon beam profile deconvolution with a feedforward neural network in this work. The beam profiles deconvolved with a three‐layer neural network had excellent agreement with diode‐measured profiles." @default.
- W2897466146 created "2018-10-26" @default.
- W2897466146 creator A5016678383 @default.
- W2897466146 creator A5019708503 @default.
- W2897466146 creator A5022527207 @default.
- W2897466146 creator A5038454329 @default.
- W2897466146 creator A5039151784 @default.
- W2897466146 creator A5044220823 @default.
- W2897466146 creator A5066063134 @default.
- W2897466146 creator A5082946919 @default.
- W2897466146 creator A5057423075 @default.
- W2897466146 date "2018-10-25" @default.
- W2897466146 modified "2023-09-30" @default.
- W2897466146 title "Feasibility of photon beam profile deconvolution using a neural network" @default.
- W2897466146 cites W1613359937 @default.
- W2897466146 cites W1964117836 @default.
- W2897466146 cites W1969284434 @default.
- W2897466146 cites W1976215100 @default.
- W2897466146 cites W1976939264 @default.
- W2897466146 cites W1979830623 @default.
- W2897466146 cites W1980268171 @default.
- W2897466146 cites W1988083452 @default.
- W2897466146 cites W1988358579 @default.
- W2897466146 cites W1989367892 @default.
- W2897466146 cites W1991420653 @default.
- W2897466146 cites W2014515263 @default.
- W2897466146 cites W2019659451 @default.
- W2897466146 cites W2035582555 @default.
- W2897466146 cites W2039052282 @default.
- W2897466146 cites W2059042743 @default.
- W2897466146 cites W2065962410 @default.
- W2897466146 cites W2068588791 @default.
- W2897466146 cites W2077956302 @default.
- W2897466146 cites W2090220144 @default.
- W2897466146 cites W2098415888 @default.
- W2897466146 cites W2107284620 @default.
- W2897466146 cites W2124589966 @default.
- W2897466146 cites W2153896207 @default.
- W2897466146 cites W2168026123 @default.
- W2897466146 cites W2169329086 @default.
- W2897466146 cites W2202451710 @default.
- W2897466146 cites W2242535875 @default.
- W2897466146 cites W2336563907 @default.
- W2897466146 cites W2768372865 @default.
- W2897466146 cites W2775520665 @default.
- W2897466146 doi "https://doi.org/10.1002/mp.13230" @default.
- W2897466146 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30295949" @default.
- W2897466146 hasPublicationYear "2018" @default.
- W2897466146 type Work @default.
- W2897466146 sameAs 2897466146 @default.
- W2897466146 citedByCount "9" @default.
- W2897466146 countsByYear W28974661462019 @default.
- W2897466146 countsByYear W28974661462020 @default.
- W2897466146 countsByYear W28974661462021 @default.
- W2897466146 countsByYear W28974661462022 @default.
- W2897466146 countsByYear W28974661462023 @default.
- W2897466146 crossrefType "journal-article" @default.
- W2897466146 hasAuthorship W2897466146A5016678383 @default.
- W2897466146 hasAuthorship W2897466146A5019708503 @default.
- W2897466146 hasAuthorship W2897466146A5022527207 @default.
- W2897466146 hasAuthorship W2897466146A5038454329 @default.
- W2897466146 hasAuthorship W2897466146A5039151784 @default.
- W2897466146 hasAuthorship W2897466146A5044220823 @default.
- W2897466146 hasAuthorship W2897466146A5057423075 @default.
- W2897466146 hasAuthorship W2897466146A5066063134 @default.
- W2897466146 hasAuthorship W2897466146A5082946919 @default.
- W2897466146 hasConcept C102392041 @default.
- W2897466146 hasConcept C105795698 @default.
- W2897466146 hasConcept C111919701 @default.
- W2897466146 hasConcept C117251300 @default.
- W2897466146 hasConcept C120665830 @default.
- W2897466146 hasConcept C121332964 @default.
- W2897466146 hasConcept C145148216 @default.
- W2897466146 hasConcept C151770136 @default.
- W2897466146 hasConcept C154945302 @default.
- W2897466146 hasConcept C155032097 @default.
- W2897466146 hasConcept C164705383 @default.
- W2897466146 hasConcept C168834538 @default.
- W2897466146 hasConcept C174576160 @default.
- W2897466146 hasConcept C198291218 @default.
- W2897466146 hasConcept C2778751112 @default.
- W2897466146 hasConcept C2780577055 @default.
- W2897466146 hasConcept C33923547 @default.
- W2897466146 hasConcept C41008148 @default.
- W2897466146 hasConcept C47702885 @default.
- W2897466146 hasConcept C50644808 @default.
- W2897466146 hasConcept C541997718 @default.
- W2897466146 hasConcept C62520636 @default.
- W2897466146 hasConcept C71924100 @default.
- W2897466146 hasConcept C94915269 @default.
- W2897466146 hasConceptScore W2897466146C102392041 @default.
- W2897466146 hasConceptScore W2897466146C105795698 @default.
- W2897466146 hasConceptScore W2897466146C111919701 @default.
- W2897466146 hasConceptScore W2897466146C117251300 @default.
- W2897466146 hasConceptScore W2897466146C120665830 @default.
- W2897466146 hasConceptScore W2897466146C121332964 @default.
- W2897466146 hasConceptScore W2897466146C145148216 @default.
- W2897466146 hasConceptScore W2897466146C151770136 @default.