Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897468516> ?p ?o ?g. }
- W2897468516 endingPage "e00151" @default.
- W2897468516 startingPage "e00151" @default.
- W2897468516 abstract "Advocacy for climate mitigation aims to minimize the use of fossil fuel and to support clean energy adaptation. While alternative energies (e.g., biofuels) extracted from feedstock (e.g., micro-algae) represent a promising role, their production requires reliably modeled photosynthetically active radiation (PAR). PAR models predict energy parameters (e.g., algal carbon fixation) to aid in decision-making at PAR sites. Here, we model very short-term (5-min scale), sub-tropical region's PAR with an Adaptive Neuro-Fuzzy Inference System model with a Centroid-Mean (ANFIS-CM) trained with a non-climate input (i.e., only the solar angle, θZ). Accuracy is benchmarked against genetic programming (GP), M5Tree, Random Forest (RF), and multiple linear regression (MLR). ANFIS-CM integrates fuzzy and neural network algorithms, whereas GP adopts an evolutionary approach, M5Tree employs binary decision, RF employs a bootstrapped ensemble, and MLR uses statistical tools to link PAR with θZ. To design the ANFIS-CM model, 5-min θZ (01–31 December 2012; 0500H–1900H) for sub-tropical, Toowoomba are utilized to extract predictive features, and the testing accuracy (i.e., differences between measurements and forecasts) is evaluated with correlation (r), root-mean-square error (RMSE), mean absolute error (MAE), Willmott (WI), Nash–Sutcliffe (ENS), and Legates & McCabes (ELM) Index. ANFIS-CM and GP are equivalent for 5-min forecasts, yielding the lowest RMSE (233.45 and 233.01μ mol m−2s−1) and MAE (186.59 and 186.23 μmol m−2s−1). In contrast, MLR, M5Tree, and RF yields higher RMSE and MAE [(RMSE = 322.25 μmol m−2s−1, MAE = 275.32 μmol m−2s−1), (RMSE = 287.70 μmol m−2s−1, MAE = 234.78 μmol m−2s−1), and (RMSE = 359.91 μmol m−2s−1, MAE = 324.52 μmol m−2s−1)]. Based on normalized error, ANFIS-CM is considerably superior (MAE = 17.18% versus 19.78%, 34.37%, 26.39%, and 30.60% for GP, MLR, M5Tree, and RF models, respectively). For hourly forecasts, ANFIS-CM outperforms all other methods (WI = 0.964 vs. 0.942, 0.955, 0.933 & 0.893, and ELM = 0.741 versus 0.701, 0.728, 0.619 & 0.490 for GP, MLR, M5Tree, and RF, respectively). Descriptive errors support the versatile predictive skills of the ANFIS-CM model and its role in real-time prediction of the photosynthetic-active energy to explore biofuel generation from micro-algae, studying food chains, and supporting agricultural precision." @default.
- W2897468516 created "2018-10-26" @default.
- W2897468516 creator A5008724716 @default.
- W2897468516 creator A5015639176 @default.
- W2897468516 creator A5043334558 @default.
- W2897468516 creator A5065141057 @default.
- W2897468516 date "2018-10-09" @default.
- W2897468516 modified "2023-10-16" @default.
- W2897468516 title "Adaptive Neuro-Fuzzy Inference System integrated with solar zenith angle for forecasting sub-tropical Photosynthetically Active Radiation" @default.
- W2897468516 cites W1542000206 @default.
- W2897468516 cites W1544123057 @default.
- W2897468516 cites W1962661332 @default.
- W2897468516 cites W1965867673 @default.
- W2897468516 cites W1966320393 @default.
- W2897468516 cites W1968984204 @default.
- W2897468516 cites W1974337596 @default.
- W2897468516 cites W1976049118 @default.
- W2897468516 cites W1984136496 @default.
- W2897468516 cites W1984915657 @default.
- W2897468516 cites W1985097691 @default.
- W2897468516 cites W1988121422 @default.
- W2897468516 cites W1990125899 @default.
- W2897468516 cites W1990368529 @default.
- W2897468516 cites W1990799964 @default.
- W2897468516 cites W1993752546 @default.
- W2897468516 cites W1995450389 @default.
- W2897468516 cites W1996255366 @default.
- W2897468516 cites W1998386215 @default.
- W2897468516 cites W1999461467 @default.
- W2897468516 cites W1999978517 @default.
- W2897468516 cites W2000554883 @default.
- W2897468516 cites W2001645181 @default.
- W2897468516 cites W2002404570 @default.
- W2897468516 cites W2003095444 @default.
- W2897468516 cites W2008816983 @default.
- W2897468516 cites W2010341850 @default.
- W2897468516 cites W2010735729 @default.
- W2897468516 cites W2011630059 @default.
- W2897468516 cites W2011704689 @default.
- W2897468516 cites W2020236162 @default.
- W2897468516 cites W2021432630 @default.
- W2897468516 cites W2023054228 @default.
- W2897468516 cites W2028120952 @default.
- W2897468516 cites W2030216404 @default.
- W2897468516 cites W2032842200 @default.
- W2897468516 cites W2033904036 @default.
- W2897468516 cites W2035853823 @default.
- W2897468516 cites W2037460094 @default.
- W2897468516 cites W2037563058 @default.
- W2897468516 cites W2041813876 @default.
- W2897468516 cites W2046738003 @default.
- W2897468516 cites W2049268981 @default.
- W2897468516 cites W2052717035 @default.
- W2897468516 cites W2052952782 @default.
- W2897468516 cites W2056996456 @default.
- W2897468516 cites W2057396845 @default.
- W2897468516 cites W2059112023 @default.
- W2897468516 cites W2065902166 @default.
- W2897468516 cites W2067578568 @default.
- W2897468516 cites W2069190823 @default.
- W2897468516 cites W2069430646 @default.
- W2897468516 cites W2079325629 @default.
- W2897468516 cites W2080344679 @default.
- W2897468516 cites W2082192822 @default.
- W2897468516 cites W2083973523 @default.
- W2897468516 cites W2088482792 @default.
- W2897468516 cites W2088678290 @default.
- W2897468516 cites W2091133346 @default.
- W2897468516 cites W2093409046 @default.
- W2897468516 cites W2102148524 @default.
- W2897468516 cites W2106328797 @default.
- W2897468516 cites W2111269952 @default.
- W2897468516 cites W2111286455 @default.
- W2897468516 cites W2111959411 @default.
- W2897468516 cites W2115104199 @default.
- W2897468516 cites W2120870436 @default.
- W2897468516 cites W2121745948 @default.
- W2897468516 cites W2124018365 @default.
- W2897468516 cites W2131292781 @default.
- W2897468516 cites W2133321814 @default.
- W2897468516 cites W2133668312 @default.
- W2897468516 cites W2134718871 @default.
- W2897468516 cites W2139086914 @default.
- W2897468516 cites W2147746661 @default.
- W2897468516 cites W2149048950 @default.
- W2897468516 cites W2149179826 @default.
- W2897468516 cites W2156278055 @default.
- W2897468516 cites W2159371584 @default.
- W2897468516 cites W2161548576 @default.
- W2897468516 cites W2172045792 @default.
- W2897468516 cites W2172152033 @default.
- W2897468516 cites W2186261019 @default.
- W2897468516 cites W2196207709 @default.
- W2897468516 cites W2274744025 @default.
- W2897468516 cites W2277144695 @default.
- W2897468516 cites W2280665404 @default.
- W2897468516 cites W2285280507 @default.
- W2897468516 cites W2443028834 @default.