Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897473609> ?p ?o ?g. }
- W2897473609 endingPage "1846" @default.
- W2897473609 startingPage "1817" @default.
- W2897473609 abstract "As societal dependence on transionospheric radio signals grows, space weather impact on these signals becomes increasingly important yet our understanding of the effects remains inadequate. This challenge is particularly acute at high latitudes where the effects of space weather are most direct and no reliable predictive capability exists. We take advantage of a large volume of data from Global Navigation Satellite Systems (GNSS) signals, increasingly sophisticated tools for data-driven discovery, and a machine learning algorithm known as the support vector machine (SVM) to develop a novel predictive model for high-latitude ionospheric phase scintillation. This work, to our knowledge, represents the first time an SVM model has been created to predict high-latitude phase scintillation. We use the true skill score to evaluate the SVM model and to establish a benchmark for high-latitude ionospheric phase scintillation prediction. The SVM model significantly outperforms persistence (i.e., current and future scintillation are identical), doubling the predictive skill according to the true skill score for a 1-hr lead time. For a 3-hr lead time, persistence is comparable to a random chance prediction, suggesting that the memory of the ionosphere in terms of high-latitude plasma irregularities is on the order of, or shorter than, a few hours. The SVM model predictive skill only slightly decreases between the 1- and 3-hr predictive tasks, pointing to the potential of this method. Our findings can serve as a foundation on which to evaluate future predictive models, a critical development toward the resolution of space weather impact on transionospheric radio signals." @default.
- W2897473609 created "2018-10-26" @default.
- W2897473609 creator A5056569294 @default.
- W2897473609 creator A5065824713 @default.
- W2897473609 creator A5068692160 @default.
- W2897473609 creator A5087062396 @default.
- W2897473609 creator A5087994664 @default.
- W2897473609 date "2018-11-01" @default.
- W2897473609 modified "2023-10-12" @default.
- W2897473609 title "New Capabilities for Prediction of High‐Latitude Ionospheric Scintillation: A Novel Approach With Machine Learning" @default.
- W2897473609 cites W1480376833 @default.
- W2897473609 cites W1506833765 @default.
- W2897473609 cites W1517554572 @default.
- W2897473609 cites W1541444517 @default.
- W2897473609 cites W1542318419 @default.
- W2897473609 cites W1542652324 @default.
- W2897473609 cites W1564814880 @default.
- W2897473609 cites W1565482293 @default.
- W2897473609 cites W1573433354 @default.
- W2897473609 cites W1616645436 @default.
- W2897473609 cites W1629285470 @default.
- W2897473609 cites W1657555569 @default.
- W2897473609 cites W1738267723 @default.
- W2897473609 cites W1756986362 @default.
- W2897473609 cites W1767649479 @default.
- W2897473609 cites W1793072210 @default.
- W2897473609 cites W1838303999 @default.
- W2897473609 cites W1878132393 @default.
- W2897473609 cites W1878975916 @default.
- W2897473609 cites W1938407039 @default.
- W2897473609 cites W1968402222 @default.
- W2897473609 cites W1969325760 @default.
- W2897473609 cites W1974798730 @default.
- W2897473609 cites W1976378416 @default.
- W2897473609 cites W1987602844 @default.
- W2897473609 cites W1993199003 @default.
- W2897473609 cites W2005736302 @default.
- W2897473609 cites W2011493800 @default.
- W2897473609 cites W2012232666 @default.
- W2897473609 cites W2013932865 @default.
- W2897473609 cites W2030518758 @default.
- W2897473609 cites W2031442402 @default.
- W2897473609 cites W2042642724 @default.
- W2897473609 cites W2047856313 @default.
- W2897473609 cites W2049998275 @default.
- W2897473609 cites W2052750118 @default.
- W2897473609 cites W2059762859 @default.
- W2897473609 cites W2063158070 @default.
- W2897473609 cites W2064395252 @default.
- W2897473609 cites W2074376208 @default.
- W2897473609 cites W2075238387 @default.
- W2897473609 cites W2076433153 @default.
- W2897473609 cites W2084157011 @default.
- W2897473609 cites W2085108230 @default.
- W2897473609 cites W2087016914 @default.
- W2897473609 cites W2089198329 @default.
- W2897473609 cites W2094736009 @default.
- W2897473609 cites W2102150948 @default.
- W2897473609 cites W2107162145 @default.
- W2897473609 cites W2107743515 @default.
- W2897473609 cites W2112090892 @default.
- W2897473609 cites W2147898188 @default.
- W2897473609 cites W2148143831 @default.
- W2897473609 cites W2155348031 @default.
- W2897473609 cites W2156957843 @default.
- W2897473609 cites W2161278885 @default.
- W2897473609 cites W2161528515 @default.
- W2897473609 cites W2162095191 @default.
- W2897473609 cites W2173715431 @default.
- W2897473609 cites W2242783385 @default.
- W2897473609 cites W2296203751 @default.
- W2897473609 cites W2299093642 @default.
- W2897473609 cites W2410165205 @default.
- W2897473609 cites W2463388488 @default.
- W2897473609 cites W2469538394 @default.
- W2897473609 cites W2507930944 @default.
- W2897473609 cites W2508640094 @default.
- W2897473609 cites W2509145218 @default.
- W2897473609 cites W2510991393 @default.
- W2897473609 cites W2519861347 @default.
- W2897473609 cites W2530647168 @default.
- W2897473609 cites W2531210883 @default.
- W2897473609 cites W2568654085 @default.
- W2897473609 cites W2582627219 @default.
- W2897473609 cites W2731963374 @default.
- W2897473609 cites W2734256217 @default.
- W2897473609 cites W2735156630 @default.
- W2897473609 cites W2743247456 @default.
- W2897473609 cites W2755213029 @default.
- W2897473609 cites W2765940401 @default.
- W2897473609 cites W2768072240 @default.
- W2897473609 cites W2770359480 @default.
- W2897473609 cites W2784258282 @default.
- W2897473609 cites W2791139947 @default.
- W2897473609 cites W2792263286 @default.
- W2897473609 cites W2792994952 @default.
- W2897473609 cites W2794964578 @default.
- W2897473609 cites W2883762248 @default.