Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897473973> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2897473973 endingPage "716" @default.
- W2897473973 startingPage "711" @default.
- W2897473973 abstract "The trend of social media and various online applications has rapidly increased over the past few years. These computer-mediated communications has resulted in the generation of large amount of short texts. A short text refers to the text with limited contextual information. Lots of interest lies in analyzing and conceptualizing short text for understanding user intents from search queries or mining social media messages. Consequently, the task of understanding short text is crucial to many online applications. But it is not ease to handle enormous volume of short texts, since they are relatively more ambiguous and noisy than normal data. The short texts do not follow the syntax of natural language. Thus, point out the necessity for an efficient text understanding technique. The task of short text understanding or conceptualization can be divided into three, as text segmentation, type detection, and concept labeling. In text segmentation, initially the input text is processed and removes all the stop words if any. Then it is divided into a sequence of terms. POS tagging decide the lexical types (i.e. POS tags) of terms in a text. Type detection is incorporated into the framework for short text understanding and it help to conduct disambiguation based on various types of contextual information that present in the text. Finally, concept labeling is performed to discover the hidden semantics from a natural language text. The conceptualization can benefit from various online applications such as automatic question-answering, recommendation systems, online advertising, and search engines. All these applications requires an information extraction phase in which the prior step is to extract the concepts from the input text. Now-a-days conceptualization is used to develop machine learning techniques for information extraction. Hence the task of conceptualization or short text understanding plays a vital role in the area of machine learning, which is an active area of research. In this paper, the current techniques used for text segmentation, type detection, and concept labeling are reviewed. Keywords: Short text understanding; conceptualization; semantic labeling; text segmentation; part-of-speech tagging" @default.
- W2897473973 created "2018-10-26" @default.
- W2897473973 creator A5012143452 @default.
- W2897473973 creator A5019955380 @default.
- W2897473973 date "2017-04-30" @default.
- W2897473973 modified "2023-09-22" @default.
- W2897473973 title "Techniques For Efficient Short Text Understanding: A Survey on Related Literature" @default.
- W2897473973 doi "https://doi.org/10.26483/ijarcs.v8i3.3082" @default.
- W2897473973 hasPublicationYear "2017" @default.
- W2897473973 type Work @default.
- W2897473973 sameAs 2897473973 @default.
- W2897473973 citedByCount "0" @default.
- W2897473973 crossrefType "journal-article" @default.
- W2897473973 hasAuthorship W2897473973A5012143452 @default.
- W2897473973 hasAuthorship W2897473973A5019955380 @default.
- W2897473973 hasConcept C136764020 @default.
- W2897473973 hasConcept C151375590 @default.
- W2897473973 hasConcept C154945302 @default.
- W2897473973 hasConcept C162324750 @default.
- W2897473973 hasConcept C170858558 @default.
- W2897473973 hasConcept C184337299 @default.
- W2897473973 hasConcept C187736073 @default.
- W2897473973 hasConcept C195324797 @default.
- W2897473973 hasConcept C195807954 @default.
- W2897473973 hasConcept C199360897 @default.
- W2897473973 hasConcept C204321447 @default.
- W2897473973 hasConcept C23123220 @default.
- W2897473973 hasConcept C2524010 @default.
- W2897473973 hasConcept C2780451532 @default.
- W2897473973 hasConcept C28719098 @default.
- W2897473973 hasConcept C33923547 @default.
- W2897473973 hasConcept C41008148 @default.
- W2897473973 hasConcept C44291984 @default.
- W2897473973 hasConcept C518677369 @default.
- W2897473973 hasConcept C60048249 @default.
- W2897473973 hasConcept C66945725 @default.
- W2897473973 hasConcept C89600930 @default.
- W2897473973 hasConcept C90734943 @default.
- W2897473973 hasConceptScore W2897473973C136764020 @default.
- W2897473973 hasConceptScore W2897473973C151375590 @default.
- W2897473973 hasConceptScore W2897473973C154945302 @default.
- W2897473973 hasConceptScore W2897473973C162324750 @default.
- W2897473973 hasConceptScore W2897473973C170858558 @default.
- W2897473973 hasConceptScore W2897473973C184337299 @default.
- W2897473973 hasConceptScore W2897473973C187736073 @default.
- W2897473973 hasConceptScore W2897473973C195324797 @default.
- W2897473973 hasConceptScore W2897473973C195807954 @default.
- W2897473973 hasConceptScore W2897473973C199360897 @default.
- W2897473973 hasConceptScore W2897473973C204321447 @default.
- W2897473973 hasConceptScore W2897473973C23123220 @default.
- W2897473973 hasConceptScore W2897473973C2524010 @default.
- W2897473973 hasConceptScore W2897473973C2780451532 @default.
- W2897473973 hasConceptScore W2897473973C28719098 @default.
- W2897473973 hasConceptScore W2897473973C33923547 @default.
- W2897473973 hasConceptScore W2897473973C41008148 @default.
- W2897473973 hasConceptScore W2897473973C44291984 @default.
- W2897473973 hasConceptScore W2897473973C518677369 @default.
- W2897473973 hasConceptScore W2897473973C60048249 @default.
- W2897473973 hasConceptScore W2897473973C66945725 @default.
- W2897473973 hasConceptScore W2897473973C89600930 @default.
- W2897473973 hasConceptScore W2897473973C90734943 @default.
- W2897473973 hasIssue "3" @default.
- W2897473973 hasLocation W28974739731 @default.
- W2897473973 hasOpenAccess W2897473973 @default.
- W2897473973 hasPrimaryLocation W28974739731 @default.
- W2897473973 hasRelatedWork W2250261831 @default.
- W2897473973 hasRelatedWork W2403935922 @default.
- W2897473973 hasRelatedWork W2404527150 @default.
- W2897473973 hasRelatedWork W2462631134 @default.
- W2897473973 hasRelatedWork W2463592278 @default.
- W2897473973 hasRelatedWork W2903028231 @default.
- W2897473973 hasRelatedWork W2905233862 @default.
- W2897473973 hasRelatedWork W2941554735 @default.
- W2897473973 hasRelatedWork W2945492173 @default.
- W2897473973 hasRelatedWork W2963104174 @default.
- W2897473973 hasRelatedWork W2992820620 @default.
- W2897473973 hasRelatedWork W3013671678 @default.
- W2897473973 hasRelatedWork W3088066054 @default.
- W2897473973 hasRelatedWork W3155114470 @default.
- W2897473973 hasRelatedWork W3165798371 @default.
- W2897473973 hasRelatedWork W3186936373 @default.
- W2897473973 hasRelatedWork W3193573834 @default.
- W2897473973 hasRelatedWork W833228676 @default.
- W2897473973 hasRelatedWork W2188252331 @default.
- W2897473973 hasRelatedWork W2554200320 @default.
- W2897473973 hasVolume "8" @default.
- W2897473973 isParatext "false" @default.
- W2897473973 isRetracted "false" @default.
- W2897473973 magId "2897473973" @default.
- W2897473973 workType "article" @default.