Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897480324> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2897480324 abstract "Creating and managing a successful stock portfolio are a difficult and challenging practice caused by the uncertainty created by the fluctuation of the stocks and the randomness in the market itself. Portfolio diversification, as stated in modern portfolio theory, is a go-to solution to manage risks. The purpose of portfolio diversification is to reduce the return’s variance compared with a single stock investment or undiversified portfolio. The primary motivation of this research is to investigate the portfolio selection strategies through clustering and application of genetic algorithm. Cluster analysis serves as a method to cluster assets with similar financial ratio scores which is the scores of Earnings/Share (EPS), Price/Earnings Ratio (PER), Price/Earnings to Growth (PEG), Return on Asset (ROA), Return on Equity (ROE), and Debt to Equity Ratio (DER). By clustering method, homogeneous clusters are produced and can be used in diversifying portfolio. In this paper, Agglomerative Clustering (AC) is used as the clustering method. Then Genetic Algorithm (GA) will be applied to each resulting cluster to obtain the optimal proportion of each stock in the portfolio. Genetic algorithm is a searching algorithm based on genetic principles and natural selection. The performance of Genetic Algorithm combined with Agglomerative Clustering (ACGA) in portfolio optimization, evaluated based on some actual datasets, gives a portfolio with bigger expected return than a portfolio constructed with only Genetic Algorithm or a portfolio constructed by uniformly weighted stock." @default.
- W2897480324 created "2018-10-26" @default.
- W2897480324 creator A5024158362 @default.
- W2897480324 creator A5050665066 @default.
- W2897480324 creator A5055909759 @default.
- W2897480324 date "2018-01-01" @default.
- W2897480324 modified "2023-09-23" @default.
- W2897480324 title "Agglomerative clustering and genetic algorithm in portfolio optimization" @default.
- W2897480324 cites W1553514715 @default.
- W2897480324 cites W1992419399 @default.
- W2897480324 cites W2100826087 @default.
- W2897480324 cites W4236670843 @default.
- W2897480324 doi "https://doi.org/10.1063/1.5064214" @default.
- W2897480324 hasPublicationYear "2018" @default.
- W2897480324 type Work @default.
- W2897480324 sameAs 2897480324 @default.
- W2897480324 citedByCount "1" @default.
- W2897480324 countsByYear W28974803242019 @default.
- W2897480324 crossrefType "proceedings-article" @default.
- W2897480324 hasAuthorship W2897480324A5024158362 @default.
- W2897480324 hasAuthorship W2897480324A5050665066 @default.
- W2897480324 hasAuthorship W2897480324A5055909759 @default.
- W2897480324 hasBestOaLocation W28974803241 @default.
- W2897480324 hasConcept C104946779 @default.
- W2897480324 hasConcept C106159729 @default.
- W2897480324 hasConcept C126255220 @default.
- W2897480324 hasConcept C144133560 @default.
- W2897480324 hasConcept C149782125 @default.
- W2897480324 hasConcept C154945302 @default.
- W2897480324 hasConcept C162324750 @default.
- W2897480324 hasConcept C162853370 @default.
- W2897480324 hasConcept C180916674 @default.
- W2897480324 hasConcept C202655437 @default.
- W2897480324 hasConcept C21099588 @default.
- W2897480324 hasConcept C2780821815 @default.
- W2897480324 hasConcept C33923547 @default.
- W2897480324 hasConcept C41008148 @default.
- W2897480324 hasConcept C51485801 @default.
- W2897480324 hasConcept C67051015 @default.
- W2897480324 hasConcept C73555534 @default.
- W2897480324 hasConcept C9725762 @default.
- W2897480324 hasConceptScore W2897480324C104946779 @default.
- W2897480324 hasConceptScore W2897480324C106159729 @default.
- W2897480324 hasConceptScore W2897480324C126255220 @default.
- W2897480324 hasConceptScore W2897480324C144133560 @default.
- W2897480324 hasConceptScore W2897480324C149782125 @default.
- W2897480324 hasConceptScore W2897480324C154945302 @default.
- W2897480324 hasConceptScore W2897480324C162324750 @default.
- W2897480324 hasConceptScore W2897480324C162853370 @default.
- W2897480324 hasConceptScore W2897480324C180916674 @default.
- W2897480324 hasConceptScore W2897480324C202655437 @default.
- W2897480324 hasConceptScore W2897480324C21099588 @default.
- W2897480324 hasConceptScore W2897480324C2780821815 @default.
- W2897480324 hasConceptScore W2897480324C33923547 @default.
- W2897480324 hasConceptScore W2897480324C41008148 @default.
- W2897480324 hasConceptScore W2897480324C51485801 @default.
- W2897480324 hasConceptScore W2897480324C67051015 @default.
- W2897480324 hasConceptScore W2897480324C73555534 @default.
- W2897480324 hasConceptScore W2897480324C9725762 @default.
- W2897480324 hasLocation W28974803241 @default.
- W2897480324 hasOpenAccess W2897480324 @default.
- W2897480324 hasPrimaryLocation W28974803241 @default.
- W2897480324 hasRelatedWork W124922649 @default.
- W2897480324 hasRelatedWork W1916867944 @default.
- W2897480324 hasRelatedWork W2019362254 @default.
- W2897480324 hasRelatedWork W2111724235 @default.
- W2897480324 hasRelatedWork W2742926032 @default.
- W2897480324 hasRelatedWork W4236548841 @default.
- W2897480324 hasRelatedWork W4308523446 @default.
- W2897480324 hasRelatedWork W4312927297 @default.
- W2897480324 hasRelatedWork W4313651936 @default.
- W2897480324 hasRelatedWork W4316169249 @default.
- W2897480324 isParatext "false" @default.
- W2897480324 isRetracted "false" @default.
- W2897480324 magId "2897480324" @default.
- W2897480324 workType "article" @default.