Matches in SemOpenAlex for { <https://semopenalex.org/work/W2897482021> ?p ?o ?g. }
- W2897482021 endingPage "1266" @default.
- W2897482021 startingPage "1262" @default.
- W2897482021 abstract "In this brief, the steady-state tracking performance of minimum kernel risk-sensitive loss in a non-stationary environment is analyzed. In order to model a non-stationary environment, a first-order random-walk model is used to describe the variations of optimum weight vector over time. Moreover, the measurement noise is considered to have non-Gaussian distribution. The energy conservation relation is utilized to extract an approximate closed-form expression for the steady-state excess mean square error (EMSE). Our analysis shows that unlike for the stationary case, the EMSE curve is not an increasing function of step-size parameter. Hence, the optimum step-size which minimizes the EMSE is derived. We also discuss that our approach can be used to extract steady-state EMSE for a general class of adaptive filters. The simulation results with different noise distributions support the theoretical derivations." @default.
- W2897482021 created "2018-10-26" @default.
- W2897482021 creator A5004587843 @default.
- W2897482021 creator A5040036501 @default.
- W2897482021 creator A5052478808 @default.
- W2897482021 creator A5082429984 @default.
- W2897482021 creator A5082697963 @default.
- W2897482021 date "2019-07-01" @default.
- W2897482021 modified "2023-09-23" @default.
- W2897482021 title "Tracking Analysis of Minimum Kernel Risk-Sensitive Loss Algorithm Under General Non-Gaussian Noise" @default.
- W2897482021 cites W1701760339 @default.
- W2897482021 cites W1865482235 @default.
- W2897482021 cites W2015184281 @default.
- W2897482021 cites W2045551057 @default.
- W2897482021 cites W2096915734 @default.
- W2897482021 cites W2105666660 @default.
- W2897482021 cites W2135160607 @default.
- W2897482021 cites W2136409657 @default.
- W2897482021 cites W2148058527 @default.
- W2897482021 cites W2494968998 @default.
- W2897482021 cites W2500157231 @default.
- W2897482021 cites W2528194423 @default.
- W2897482021 cites W2549133344 @default.
- W2897482021 cites W2782618922 @default.
- W2897482021 cites W2808007300 @default.
- W2897482021 cites W2963106684 @default.
- W2897482021 cites W4230367971 @default.
- W2897482021 doi "https://doi.org/10.1109/tcsii.2018.2874969" @default.
- W2897482021 hasPublicationYear "2019" @default.
- W2897482021 type Work @default.
- W2897482021 sameAs 2897482021 @default.
- W2897482021 citedByCount "6" @default.
- W2897482021 countsByYear W28974820212019 @default.
- W2897482021 countsByYear W28974820212021 @default.
- W2897482021 countsByYear W28974820212022 @default.
- W2897482021 countsByYear W28974820212023 @default.
- W2897482021 crossrefType "journal-article" @default.
- W2897482021 hasAuthorship W2897482021A5004587843 @default.
- W2897482021 hasAuthorship W2897482021A5040036501 @default.
- W2897482021 hasAuthorship W2897482021A5052478808 @default.
- W2897482021 hasAuthorship W2897482021A5082429984 @default.
- W2897482021 hasAuthorship W2897482021A5082697963 @default.
- W2897482021 hasBestOaLocation W28974820212 @default.
- W2897482021 hasConcept C105795698 @default.
- W2897482021 hasConcept C11413529 @default.
- W2897482021 hasConcept C114614502 @default.
- W2897482021 hasConcept C115961682 @default.
- W2897482021 hasConcept C121194460 @default.
- W2897482021 hasConcept C121332964 @default.
- W2897482021 hasConcept C126255220 @default.
- W2897482021 hasConcept C147789679 @default.
- W2897482021 hasConcept C154945302 @default.
- W2897482021 hasConcept C15744967 @default.
- W2897482021 hasConcept C163716315 @default.
- W2897482021 hasConcept C185592680 @default.
- W2897482021 hasConcept C19417346 @default.
- W2897482021 hasConcept C2775924081 @default.
- W2897482021 hasConcept C2775936607 @default.
- W2897482021 hasConcept C28826006 @default.
- W2897482021 hasConcept C33923547 @default.
- W2897482021 hasConcept C41008148 @default.
- W2897482021 hasConcept C4199805 @default.
- W2897482021 hasConcept C47446073 @default.
- W2897482021 hasConcept C62520636 @default.
- W2897482021 hasConcept C7218915 @default.
- W2897482021 hasConcept C74193536 @default.
- W2897482021 hasConcept C8171440 @default.
- W2897482021 hasConcept C99498987 @default.
- W2897482021 hasConceptScore W2897482021C105795698 @default.
- W2897482021 hasConceptScore W2897482021C11413529 @default.
- W2897482021 hasConceptScore W2897482021C114614502 @default.
- W2897482021 hasConceptScore W2897482021C115961682 @default.
- W2897482021 hasConceptScore W2897482021C121194460 @default.
- W2897482021 hasConceptScore W2897482021C121332964 @default.
- W2897482021 hasConceptScore W2897482021C126255220 @default.
- W2897482021 hasConceptScore W2897482021C147789679 @default.
- W2897482021 hasConceptScore W2897482021C154945302 @default.
- W2897482021 hasConceptScore W2897482021C15744967 @default.
- W2897482021 hasConceptScore W2897482021C163716315 @default.
- W2897482021 hasConceptScore W2897482021C185592680 @default.
- W2897482021 hasConceptScore W2897482021C19417346 @default.
- W2897482021 hasConceptScore W2897482021C2775924081 @default.
- W2897482021 hasConceptScore W2897482021C2775936607 @default.
- W2897482021 hasConceptScore W2897482021C28826006 @default.
- W2897482021 hasConceptScore W2897482021C33923547 @default.
- W2897482021 hasConceptScore W2897482021C41008148 @default.
- W2897482021 hasConceptScore W2897482021C4199805 @default.
- W2897482021 hasConceptScore W2897482021C47446073 @default.
- W2897482021 hasConceptScore W2897482021C62520636 @default.
- W2897482021 hasConceptScore W2897482021C7218915 @default.
- W2897482021 hasConceptScore W2897482021C74193536 @default.
- W2897482021 hasConceptScore W2897482021C8171440 @default.
- W2897482021 hasConceptScore W2897482021C99498987 @default.
- W2897482021 hasIssue "7" @default.
- W2897482021 hasLocation W28974820211 @default.
- W2897482021 hasLocation W28974820212 @default.
- W2897482021 hasOpenAccess W2897482021 @default.
- W2897482021 hasPrimaryLocation W28974820211 @default.